[ 
https://issues.apache.org/jira/browse/SPARK-44585?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Sean R. Owen reassigned SPARK-44585:
------------------------------------

    Assignee: Guilhem Vuillier

> Fix warning condition in MLLib RankingMetrics ndcgAk
> ----------------------------------------------------
>
>                 Key: SPARK-44585
>                 URL: https://issues.apache.org/jira/browse/SPARK-44585
>             Project: Spark
>          Issue Type: Bug
>          Components: MLlib
>    Affects Versions: 3.4.1
>            Reporter: Guilhem Vuillier
>            Assignee: Guilhem Vuillier
>            Priority: Minor
>
> The implementation of nDCG evaluation in MLLib with relevance score (added in 
> 3.4.0, see https://issues.apache.org/jira/browse/SPARK-39446 and [pull 
> request|https://github.com/apache/spark/pull/36843]) implements the following 
> warning when the input data isn't correct: "# of ground truth set and # of 
> relevance value set should be equal, check input data"
>  
> The logic for raising warnings is faulty at the moment: it raises a warning 
> when the following conditions are both true:
>  # {{rel}} is empty
>  # {{lab.size}} and {{rel.size}} are not equal.
>  
> With the current logic, RankingMetrics will:
>  * raise incorrect warning when a user is using it in the "binary" mode (i.e. 
> no relevance values in the input)
>  * not raise warning (that could be necessary) when the user is using it in 
> the "non-binary" model (i.e. with relevance values in the input)
>  
> The logic should be to raise a warning should be:
>  # {{rel}} is *not empty*
>  # {{lab.size}} and {{rel.size}} are not equal.
>  



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to