[ https://issues.apache.org/jira/browse/SPARK-6407?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14423680#comment-14423680 ]
Xiangrui Meng commented on SPARK-6407: -------------------------------------- Using ALS for online updates is expensive. I think we should use the factors from ALS as the initial point and use a stochastic gradient descent scheme for online update, e.g. DSGD: http://dl.acm.org/citation.cfm?id=2020426. I'm not sure whether this would work. Someone should work out the math first. > Streaming ALS for Collaborative Filtering > ----------------------------------------- > > Key: SPARK-6407 > URL: https://issues.apache.org/jira/browse/SPARK-6407 > Project: Spark > Issue Type: New Feature > Components: Streaming > Reporter: Felix Cheung > Priority: Minor > > Like MLLib's ALS implementation for recommendation, and applying to streaming. > Similar to streaming linear regression, logistic regression, could we apply > gradient updates to batches of data and reuse existing MLLib implementation? -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org