[ 
https://issues.apache.org/jira/browse/SPARK-6407?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14423680#comment-14423680
 ] 

Xiangrui Meng commented on SPARK-6407:
--------------------------------------

Using ALS for online updates is expensive. I think we should use the factors 
from ALS as the initial point and use a stochastic gradient descent scheme for 
online update, e.g. DSGD: http://dl.acm.org/citation.cfm?id=2020426. I'm not 
sure whether this would work. Someone should work out the math first.

> Streaming ALS for Collaborative Filtering
> -----------------------------------------
>
>                 Key: SPARK-6407
>                 URL: https://issues.apache.org/jira/browse/SPARK-6407
>             Project: Spark
>          Issue Type: New Feature
>          Components: Streaming
>            Reporter: Felix Cheung
>            Priority: Minor
>
> Like MLLib's ALS implementation for recommendation, and applying to streaming.
> Similar to streaming linear regression, logistic regression, could we apply 
> gradient updates to batches of data and reuse existing MLLib implementation?



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to