[ 
https://issues.apache.org/jira/browse/SPARK-49261?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17875657#comment-17875657
 ] 

Bruce Robbins commented on SPARK-49261:
---------------------------------------

{quote}It seems to be a correlation between F.lit(6).alias("run_number") and 
F.round(F.col("total_amount") / 1000, 6). If both lit and scale in round are 
set to the same number i.e. 6 code fails.
{quote}
That's a good summary of the issue. The bug seems to be 
[here|https://github.com/apache/spark/blob/a885365897acefcf353206aaabd0048e088cc9a7/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/RewriteDistinctAggregates.scala#L409].
 That code will replace foldable and non-foldable expressions with expressions 
from the group by attributes, but I think it should only replace non-foldable 
expressions.

In the case of the round function, that code is patching the second parameter, 
which requires a foldable expression, with a non-foldable expression. As a 
result, {{RoundBase#checkInputDataTypes}} fails.

> Correlation between lit and round during grouping
> -------------------------------------------------
>
>                 Key: SPARK-49261
>                 URL: https://issues.apache.org/jira/browse/SPARK-49261
>             Project: Spark
>          Issue Type: Bug
>          Components: PySpark
>    Affects Versions: 3.5.0
>         Environment: Databricks DBR 14.3
> Spark 3.5.0
> Scala 2.12
>            Reporter: Krystian Kulig
>            Priority: Major
>             Fix For: 3.5.0
>
>
> Running following code:
>  
> {code:java}
> import pyspark.sql.functions as F
> from decimal import Decimal
> data = [
>   (1, 100, Decimal("1.1"),  "L", True),
>   (2, 200, Decimal("1.2"),  "H", False),
>   (2, 300, Decimal("2.345"), "E", False),
> ]
> columns = ["group_a", "id", "amount", "selector_a", "selector_b"]
> df = spark.createDataFrame(data, schema=columns)
> df_final = (
>   df.select(
>     F.lit(6).alias("run_number"),
>     F.lit("AA").alias("run_type"),
>     F.col("group_a"),
>     F.col("id"),
>     F.col("amount"),
>     F.col("selector_a"),
>     F.col("selector_b"),
>   )
>   .withColumn(
>     "amount_c",
>     F.when(
>       (F.col("selector_b") == False)
>       & (F.col("selector_a").isin(["L", "H", "E"])),
>       F.col("amount"),
>     ).otherwise(F.lit(None))
>   )
>   .withColumn(
>     "count_of_amount_c",
>     F.when(
>       (F.col("selector_b") == False)
>       & (F.col("selector_a").isin(["L", "H", "E"])),
>       F.col("id")
>     ).otherwise(F.lit(None))
>   )
> )
> group_by_cols = [
>   "run_number",
>   "group_a",
>   "run_type"
> ]
> df_final = df_final.groupBy(group_by_cols).agg(
>   F.countDistinct("id").alias("count_of_amount"),
>   F.round(F.sum("amount")/ 1000, 1).alias("total_amount"),
>   F.sum("amount_c").alias("amount_c"),
>   F.countDistinct("count_of_amount_c").alias(
>     "count_of_amount_c"
>   ),
> )
> df_final = (
>   df_final
>   .withColumn(
>     "total_amount",
>     F.round(F.col("total_amount") / 1000, 6),
>   )
>   .withColumn(
>     "count_of_amount", F.col("count_of_amount").cast("int")
>   )
>   .withColumn(
>     "count_of_amount_c",
>     F.when(
>       F.col("amount_c").isNull(), F.lit(None).cast("int")
>     ).otherwise(F.col("count_of_amount_c").cast("int")),
>   )
> )
> df_final = df_final.select(
>   F.col("total_amount"),
>   "run_number",
>   "group_a",
>   "run_type",
>   "count_of_amount",
>   "amount_c",
>   "count_of_amount_c",
> )
> df_final.show() {code}
> Produces error:
> {code:java}
> [[INTERNAL_ERROR](https://docs.microsoft.com/azure/databricks/error-messages/error-classes#internal_error)]
>  Couldn't find total_amount#1046 in 
> [group_a#984L,count_of_amount#1054,amount_c#1033,count_of_amount_c#1034L] 
> SQLSTATE: XX000 {code}
> With stack trace:
> {code:java}
> org.apache.spark.SparkException: [INTERNAL_ERROR] Couldn't find 
> total_amount#1046 in 
> [group_a#984L,count_of_amount#1054,amount_c#1033,count_of_amount_c#1034L] 
> SQLSTATE: XX000 at 
> org.apache.spark.SparkException$.internalError(SparkException.scala:97) at 
> org.apache.spark.SparkException$.internalError(SparkException.scala:101) at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:81)
>  at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:74)
>  at 
> org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:505)
>  at 
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(origin.scala:83)
>  at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:505)
>  at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:481)
>  at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:449) at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:74)
>  at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$.$anonfun$bindReferences$1(BoundAttribute.scala:97)
>  at 
> scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:286) at 
> scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) at 
> scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) at 
> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) at 
> scala.collection.TraversableLike.map(TraversableLike.scala:286) at 
> scala.collection.TraversableLike.map$(TraversableLike.scala:279) at 
> scala.collection.AbstractTraversable.map(Traversable.scala:108) at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReferences(BoundAttribute.scala:97)
>  at 
> org.apache.spark.sql.execution.ProjectExec.doConsume(basicPhysicalOperators.scala:74)
>  at 
> org.apache.spark.sql.execution.CodegenSupport.consume(WholeStageCodegenExec.scala:202)
>  at 
> org.apache.spark.sql.execution.CodegenSupport.consume$(WholeStageCodegenExec.scala:155)
>  at 
> org.apache.spark.sql.execution.aggregate.HashAggregateExec.consume(HashAggregateExec.scala:51)
>  at 
> org.apache.spark.sql.execution.aggregate.HashAggregateExec.generateResultFunction(HashAggregateExec.scala:411)
>  at 
> org.apache.spark.sql.execution.aggregate.HashAggregateExec.doConsumeWithKeys(HashAggregateExec.scala:995)
>  at 
> org.apache.spark.sql.execution.aggregate.AggregateCodegenSupport.doConsume(AggregateCodegenSupport.scala:81)
>  at 
> org.apache.spark.sql.execution.aggregate.AggregateCodegenSupport.doConsume$(AggregateCodegenSupport.scala:77)
>  at 
> org.apache.spark.sql.execution.aggregate.HashAggregateExec.doConsume(HashAggregateExec.scala:51)
>  at 
> org.apache.spark.sql.execution.CodegenSupport.constructDoConsumeFunction(WholeStageCodegenExec.scala:229)
>  at 
> org.apache.spark.sql.execution.CodegenSupport.consume(WholeStageCodegenExec.scala:200)
>  at 
> org.apache.spark.sql.execution.CodegenSupport.consume$(WholeStageCodegenExec.scala:155)
>  at 
> org.apache.spark.sql.execution.InputAdapter.consume(WholeStageCodegenExec.scala:506)
>  at 
> org.apache.spark.sql.execution.InputRDDCodegen.doProduce(WholeStageCodegenExec.scala:493)
>  at 
> org.apache.spark.sql.execution.InputRDDCodegen.doProduce$(WholeStageCodegenExec.scala:466)
>  at 
> org.apache.spark.sql.execution.InputAdapter.doProduce(WholeStageCodegenExec.scala:506)
>  at 
> org.apache.spark.sql.execution.CodegenSupport.$anonfun$produce$1(WholeStageCodegenExec.scala:100)
>  at 
> org.apache.spark.sql.execution.SparkPlan$.org$apache$spark$sql$execution$SparkPlan$$withExecuteQueryLogging(SparkPlan.scala:130)
>  at 
> org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:385)
>  at 
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165)
>  at 
> org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:381) at 
> org.apache.spark.sql.execution.CodegenSupport.produce(WholeStageCodegenExec.scala:95)
>  at 
> org.apache.spark.sql.execution.CodegenSupport.produce$(WholeStageCodegenExec.scala:94)
>  at 
> org.apache.spark.sql.execution.InputAdapter.produce(WholeStageCodegenExec.scala:506)
>  at 
> org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduceWithKeys(HashAggregateExec.scala:629)
>  at 
> org.apache.spark.sql.execution.aggregate.AggregateCodegenSupport.doProduce(AggregateCodegenSupport.scala:73)
>  at 
> org.apache.spark.sql.execution.aggregate.AggregateCodegenSupport.doProduce$(AggregateCodegenSupport.scala:69)
>  at 
> org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduce(HashAggregateExec.scala:51)
>  at 
> org.apache.spark.sql.execution.CodegenSupport.$anonfun$produce$1(WholeStageCodegenExec.scala:100)
>  at 
> org.apache.spark.sql.execution.SparkPlan$.org$apache$spark$sql$execution$SparkPlan$$withExecuteQueryLogging(SparkPlan.scala:130)
>  at 
> org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:385)
>  at 
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165)
>  at 
> org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:381) at 
> org.apache.spark.sql.execution.CodegenSupport.produce(WholeStageCodegenExec.scala:95)
>  at 
> org.apache.spark.sql.execution.CodegenSupport.produce$(WholeStageCodegenExec.scala:94)
>  at 
> org.apache.spark.sql.execution.aggregate.HashAggregateExec.produce(HashAggregateExec.scala:51)
>  at 
> org.apache.spark.sql.execution.ProjectExec.doProduce(basicPhysicalOperators.scala:59)
>  at 
> org.apache.spark.sql.execution.CodegenSupport.$anonfun$produce$1(WholeStageCodegenExec.scala:100)
>  at 
> org.apache.spark.sql.execution.SparkPlan$.org$apache$spark$sql$execution$SparkPlan$$withExecuteQueryLogging(SparkPlan.scala:130)
>  at 
> org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:385)
>  at 
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165)
>  at 
> org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:381) at 
> org.apache.spark.sql.execution.CodegenSupport.produce(WholeStageCodegenExec.scala:95)
>  at 
> org.apache.spark.sql.execution.CodegenSupport.produce$(WholeStageCodegenExec.scala:94)
>  at 
> org.apache.spark.sql.execution.ProjectExec.produce(basicPhysicalOperators.scala:46)
>  at 
> org.apache.spark.sql.execution.WholeStageCodegenExec.doCodeGen(WholeStageCodegenExec.scala:666)
>  at 
> org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:729)
>  at 
> org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$2(SparkPlan.scala:327)
>  at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94) 
> at 
> org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:327)
>  at 
> org.apache.spark.sql.execution.SparkPlan$.org$apache$spark$sql$execution$SparkPlan$$withExecuteQueryLogging(SparkPlan.scala:130)
>  at 
> org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:385)
>  at 
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165)
>  at 
> org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:381) at 
> org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:322) at 
> org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:117)
>  at 
> org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:131)
>  at 
> org.apache.spark.sql.execution.qrc.InternalRowFormat$.collect(cachedSparkResults.scala:94)
>  at 
> org.apache.spark.sql.execution.qrc.InternalRowFormat$.collect(cachedSparkResults.scala:90)
>  at 
> org.apache.spark.sql.execution.qrc.InternalRowFormat$.collect(cachedSparkResults.scala:78)
>  at 
> org.apache.spark.sql.execution.qrc.ResultCacheManager.$anonfun$computeResult$1(ResultCacheManager.scala:549)
>  at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94) 
> at 
> org.apache.spark.sql.execution.qrc.ResultCacheManager.collectResult$1(ResultCacheManager.scala:540)
>  at 
> org.apache.spark.sql.execution.qrc.ResultCacheManager.$anonfun$computeResult$2(ResultCacheManager.scala:555)
>  at 
> org.apache.spark.sql.execution.adaptive.ResultQueryStageExec.$anonfun$doMaterialize$1(QueryStageExec.scala:663)
>  at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1175) at 
> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$6(SQLExecution.scala:778)
>  at 
> com.databricks.util.LexicalThreadLocal$Handle.runWith(LexicalThreadLocal.scala:63)
>  at 
> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$5(SQLExecution.scala:778)
>  at 
> com.databricks.util.LexicalThreadLocal$Handle.runWith(LexicalThreadLocal.scala:63)
>  at 
> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$4(SQLExecution.scala:778)
>  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62) at 
> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$3(SQLExecution.scala:777)
>  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62) at 
> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$2(SQLExecution.scala:776)
>  at 
> org.apache.spark.sql.execution.SQLExecution$.withOptimisticTransaction(SQLExecution.scala:798)
>  at 
> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$1(SQLExecution.scala:775)
>  at 
> java.util.concurrent.CompletableFuture$AsyncSupply.run(CompletableFuture.java:1604)
>  at 
> org.apache.spark.util.threads.SparkThreadLocalCapturingRunnable.$anonfun$run$1(SparkThreadLocalForwardingThreadPoolExecutor.scala:134)
>  at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at 
> com.databricks.spark.util.IdentityClaim$.withClaim(IdentityClaim.scala:48) at 
> org.apache.spark.util.threads.SparkThreadLocalCapturingHelper.$anonfun$runWithCaptured$4(SparkThreadLocalForwardingThreadPoolExecutor.scala:91)
>  at 
> com.databricks.unity.UCSEphemeralState$Handle.runWith(UCSEphemeralState.scala:45)
>  at 
> org.apache.spark.util.threads.SparkThreadLocalCapturingHelper.runWithCaptured(SparkThreadLocalForwardingThreadPoolExecutor.scala:90)
>  at 
> org.apache.spark.util.threads.SparkThreadLocalCapturingHelper.runWithCaptured$(SparkThreadLocalForwardingThreadPoolExecutor.scala:67)
>  at 
> org.apache.spark.util.threads.SparkThreadLocalCapturingRunnable.runWithCaptured(SparkThreadLocalForwardingThreadPoolExecutor.scala:131)
>  at 
> org.apache.spark.util.threads.SparkThreadLocalCapturingRunnable.run(SparkThreadLocalForwardingThreadPoolExecutor.scala:134)
>  at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>  at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>  at java.lang.Thread.run(Thread.java:750)
>  {code}
>  
> It seems to be a correlation between *F.lit(6).alias("run_number")* and 
> {*}F.round(F.col("total_amount") / 1000, 6){*}. If both *lit* and *scale* in 
> *round* are set to the same number i.e. *6* code fails.
> If numbers are different all works.
> Moving *F.lit(6).alias("run_number")* to the final *select* also solves the 
> problem when both numbers in *lit* and *scale* in *round* are the same.
> Example of the working code:
> {code:java}
> import pyspark.sql.functions as F
> from decimal import Decimal
> data = [  (1, 100, Decimal("1.1"),  "L", True),
>   (2, 200, Decimal("1.2"),  "H", False),
>   (2, 300, Decimal("2.345"), "E", False),
> ]
> columns = ["group_a", "id", "amount", "selector_a", "selector_b"]
> df = spark.createDataFrame(data, schema=columns)
> df_final = (
>   df.select(
>     F.lit(7).alias("run_number"),
>     F.lit("AA").alias("run_type"),
>     F.col("group_a"),
>     F.col("id"),
>     F.col("amount"),
>     F.col("selector_a"),
>     F.col("selector_b"),
>   )
>   .withColumn(
>     "amount_c",
>     F.when(
>       (F.col("selector_b") == False)
>       & (F.col("selector_a").isin(["L", "H", "E"])),
>       F.col("amount"),
>     ).otherwise(F.lit(None))
>   )
>   .withColumn(
>     "count_of_amount_c",
>     F.when(
>       (F.col("selector_b") == False)
>       & (F.col("selector_a").isin(["L", "H", "E"])),
>       F.col("id")
>     ).otherwise(F.lit(None))
>   )
> )
> group_by_cols = [
>   "run_number",
>   "group_a",
>   "run_type"
> ]
> df_final = df_final.groupBy(group_by_cols).agg(
>   F.countDistinct("id").alias("count_of_amount"),
>   F.round(F.sum("amount")/ 1000, 1).alias("total_amount"),
>   F.sum("amount_c").alias("amount_c"),
>   F.countDistinct("count_of_amount_c").alias(
>     "count_of_amount_c"
>   ),
> )
> df_final = (
>   df_final
>   .withColumn(
>     "total_amount",
>     F.round(F.col("total_amount") / 1000, 6),
>   )
>   .withColumn(
>     "count_of_amount", F.col("count_of_amount").cast("int")
>   )
>   .withColumn(
>     "count_of_amount_c",
>     F.when(
>       F.col("amount_c").isNull(), F.lit(None).cast("int")
>     ).otherwise(F.col("count_of_amount_c").cast("int")),
>   )
> )
> df_final = df_final.select(
>   F.col("total_amount"),
>   "run_number",
>   "group_a",
>   "run_type",
>   "count_of_amount",
>   "amount_c",
>   "count_of_amount_c",
> )
> df_final.show() {code}
> Output:
> {code:java}
> +------------+----------+-------+--------+---------------+--------------------+-----------------+
> |total_amount|run_number|group_a|run_type|count_of_amount|            
> amount_c|count_of_amount_c|
> +------------+----------+-------+--------+---------------+--------------------+-----------------+
> |    0.000000|         7|      2|      AA|              
> 2|3.545000000000000000|                2|
> |    0.000000|         7|      1|      AA|              1|                
> NULL|             NULL|
> +------------+----------+-------+--------+---------------+--------------------+-----------------+{code}
> Expected behavior:
> Values used in the *lit* function shouldn't interfere with the *scale* 
> parameter in the *round* function
>  
>  
>  



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to