Bruce Robbins created SPARK-52339: ------------------------------------- Summary: Relations may appear equal even though they are different Key: SPARK-52339 URL: https://issues.apache.org/jira/browse/SPARK-52339 Project: Spark Issue Type: Bug Components: SQL Affects Versions: 4.0.0, 3.5.6 Reporter: Bruce Robbins
For example: {noformat} // create test data val data = Seq((1, 2), (2, 3)).toDF("a", "b") data.write.mode("overwrite").csv("/tmp/test") val fileList1 = List.fill(2)("/tmp/test") val fileList2 = List.fill(3)("/tmp/test") val df1 = spark.read.schema("a int, b int").csv(fileList1: _*) val df2 = spark.read.schema("a int, b int").csv(fileList2: _*) df1.count() // correctly returns 4 df2.count() // correctly returns 6 // the following is the same as above, except df1 is persisted val df1 = spark.read.schema("a int, b int").csv(fileList1: _*).persist val df2 = spark.read.schema("a int, b int").csv(fileList2: _*) df1.count() // correctly returns 4 df2.count() // incorrectly returns 4!! {noformat} df1 and df2 were created with a different number of paths: df1 has 2, and df2 has 3. But since the distinct set of root paths is the same (e.g., {{Set("/tmp/test") == Set("/tmp/test"))}}, the two dataframes are considered equal. Thus, when df1 is persisted, df2 uses df1's cached plan. The same bug also causes inappropriate exchange reuse. -- This message was sent by Atlassian Jira (v8.20.10#820010) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org