[ 
https://issues.apache.org/jira/browse/SPARK-7035?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14513633#comment-14513633
 ] 

Kalle Jepsen commented on SPARK-7035:
-------------------------------------

[~rxin] Sure, I'll try to prepare one today.

> Drop __getattr__ on pyspark.sql.DataFrame
> -----------------------------------------
>
>                 Key: SPARK-7035
>                 URL: https://issues.apache.org/jira/browse/SPARK-7035
>             Project: Spark
>          Issue Type: Sub-task
>          Components: PySpark
>    Affects Versions: 1.4.0
>            Reporter: Kalle Jepsen
>
> I think the {{\_\_getattr\_\_}} method on the DataFrame should be removed.
> There is no point in having the possibility to address the DataFrames columns 
> as {{df.column}}, other than the questionable goal to please R developers. 
> And it seems R people can use Spark from their native API in the future.
> I see the following problems with {{\_\_getattr\_\_}} for column selection:
> * It's un-pythonic: There should only be one obvious way to solve a problem, 
> and we can already address columns on a DataFrame via the {{\_\_getitem\_\_}} 
> method, which in my opinion is by far superior and a lot more intuitive.
> * It leads to confusing Exceptions. When we mistype a method-name the 
> {{AttributeError}} will say 'No such column ... '.
> * And most importantly: we cannot load DataFrames that have columns with the 
> same name as any attribute on the DataFrame-object. Imagine having a 
> DataFrame with a column named {{cache}} or {{filter}}. Calling {{df.cache()}} 
> will be ambiguous and lead to broken code.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to