[ https://issues.apache.org/jira/browse/SPARK-5564?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Joseph K. Bradley updated SPARK-5564: ------------------------------------- Target Version/s: 1.5.0 (was: 1.4.0) > Support sparse LDA solutions > ---------------------------- > > Key: SPARK-5564 > URL: https://issues.apache.org/jira/browse/SPARK-5564 > Project: Spark > Issue Type: Improvement > Components: MLlib > Affects Versions: 1.3.0 > Reporter: Joseph K. Bradley > > Latent Dirichlet Allocation (LDA) currently requires that the priors’ > concentration parameters be > 1.0. It should support values > 0.0, which > should encourage sparser topics (phi) and document-topic distributions > (theta). > For EM, this will require adding a projection to the M-step, as in: Vorontsov > and Potapenko. "Tutorial on Probabilistic Topic Modeling : Additive > Regularization for Stochastic Matrix Factorization." 2014. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org