[ 
https://issues.apache.org/jira/browse/SPARK-54531?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Ruifeng Zheng reassigned SPARK-54531:
-------------------------------------

    Assignee: Yicong Huang

> Separate Aggregation Pandas UDF Serializer
> ------------------------------------------
>
>                 Key: SPARK-54531
>                 URL: https://issues.apache.org/jira/browse/SPARK-54531
>             Project: Spark
>          Issue Type: Task
>          Components: PySpark
>    Affects Versions: 4.1.0
>            Reporter: Yicong Huang
>            Assignee: Yicong Huang
>            Priority: Major
>              Labels: pull-request-available
>
> Currently, `SQL_GROUPED_AGG_PANDAS_UDF` and `SQL_WINDOW_AGG_PANDAS_UDF` share 
> `GroupPandasUDFSerializer` with `SQL_GROUPED_MAP_PANDAS_UDF`, but they have 
> fundamentally different semantics. Aggregation UDFs return `(pandas.Series, 
> arrow_type)` tuples and support multi-UDF execution, while grouped map UDFs 
> return `[(pandas.DataFrame, arrow_type)]` lists and do not support multi-UDF. 
> The shared serializer requires complex branching logic to handle these 
> different return formats and execution patterns, making the code harder to 
> maintain and understand.



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to