[ 
https://issues.apache.org/jira/browse/SPARK-54639?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Hyukjin Kwon resolved SPARK-54639.
----------------------------------
    Fix Version/s: 4.2.0
       Resolution: Fixed

Issue resolved by pull request 53387
[https://github.com/apache/spark/pull/53387]

> Optimize Arrow serializers by avoiding unnecessary Table creation
> -----------------------------------------------------------------
>
>                 Key: SPARK-54639
>                 URL: https://issues.apache.org/jira/browse/SPARK-54639
>             Project: Spark
>          Issue Type: Improvement
>          Components: PySpark
>    Affects Versions: 4.2.0
>            Reporter: Yicong Huang
>            Assignee: Yicong Huang
>            Priority: Major
>              Labels: pull-request-available
>             Fix For: 4.2.0
>
>
> Several serializers in pyspark.sql.pandas.serializers unnecessarily create 
> pa.Table objects when processing single RecordBatch instances. When 
> converting Arrow RecordBatches to pandas Series, the code creates a pa.Table 
> wrapper for each batch just to iterate over columns, which introduces 
> unnecessary object creation, extra function call overhead, and increases GC 
> pressure.
> The issue appears in multiple serializers:
> {code:python}
> # ArrowStreamPandasSerializer.load_stream() 
> # ArrowStreamAggPandasUDFSerializer.load_stream() 
> # GroupPandasUDFSerializer.load_stream() 
> for batch in batches:
>     pandas_batches = [
>         self.arrow_to_pandas(c, i)
>         for i, c in enumerate(pa.Table.from_batches([batch]).itercolumns())
>     ]
> {code}
> We can optimize this by directly accessing columns from RecordBatch instead:
> {code:python}
> for batch in batches:
>     pandas_batches = [
>         self.arrow_to_pandas(batch.column(i), i)
>         for i in range(batch.num_columns)
>     ]
> {code}



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to