[ https://issues.apache.org/jira/browse/SPARK-7548?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14538937#comment-14538937 ]
Nicholas Chammas commented on SPARK-7548: ----------------------------------------- To provide a motivating example for the record, consider a DataFrame that looks like this: {code} >>> a = { 'test_name': 'abracadabra', 'results': [{'time': 14.7}, {'time': 22.3}] } >>> df = sqlContext.jsonRDD(sc.parallelize([json.dumps(a)])) >>> df.printSchema() root |-- results: array (nullable = true) | |-- element: struct (containsNull = true) | | |-- time: double (nullable = true) |-- test_name: string (nullable = true) >>> print df.select('results.time').collect() [Row(time=[14.7, 22.3])] {code} It is currently not possible to aggregate over the nested {{time}} field as follows: {code} df.groupBy('test_name').avg('results.time') {code} An alternative to supporting this kind of aggregation would be to offer some way to "promote" the nested column to a top-level column. Hence, {{explode()}}. > Add explode expression > ---------------------- > > Key: SPARK-7548 > URL: https://issues.apache.org/jira/browse/SPARK-7548 > Project: Spark > Issue Type: Sub-task > Components: SQL > Reporter: Reynold Xin > Assignee: Michael Armbrust > Priority: Blocker > -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org