[ 
https://issues.apache.org/jira/browse/SPARK-8409?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14590116#comment-14590116
 ] 

Shivaram Venkataraman commented on SPARK-8409:
----------------------------------------------

[~b.arunguna...@gmail.com] These are good questions to post to the Spark user 
mailing list or StackOverflow (See http://spark.apache.org/community.html for 
details).  I'm closing this issue for now as the JIRA is more suitable for 
development issues / reporting bugs that need to fixed in Spark.

>  In windows cant able to read .csv or .json files using read.df()
> -----------------------------------------------------------------
>
>                 Key: SPARK-8409
>                 URL: https://issues.apache.org/jira/browse/SPARK-8409
>             Project: Spark
>          Issue Type: Bug
>          Components: Build
>    Affects Versions: 1.4.0
>         Environment: sparkR API
>            Reporter: Arun
>            Priority: Critical
>              Labels: build
>
> Hi, 
> In SparkR shell, I invoke: 
> > mydf<-read.df(sqlContext, "/home/esten/ami/usaf.json", source="json", 
> > header="false") 
> I have tried various filetypes (csv, txt), all fail.   
>  in sparkR of spark 1.4 for eg.) df_1<- read.df(sqlContext, 
> "E:/setup/spark-1.4.0-bin-hadoop2.6/spark-1.4.0-bin-hadoop2.6/examples/src/main/resources/nycflights13.csv",
>  source = "csv")
> RESPONSE: "ERROR RBackendHandler: load on 1 failed" 
> BELOW THE WHOLE RESPONSE: 
> 15/06/16 08:09:13 INFO MemoryStore: ensureFreeSpace(177600) called with 
> curMem=0, maxMem=278302556 
> 15/06/16 08:09:13 INFO MemoryStore: Block broadcast_0 stored as values in 
> memory (estimated size 173.4 KB, free 265.2 MB) 
> 15/06/16 08:09:13 INFO MemoryStore: ensureFreeSpace(16545) called with 
> curMem=177600, maxMem=278302556 
> 15/06/16 08:09:13 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes 
> in memory (estimated size 16.2 KB, free 265.2 MB) 
> 15/06/16 08:09:13 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory 
> on localhost:37142 (size: 16.2 KB, free: 265.4 MB) 
> 15/06/16 08:09:13 INFO SparkContext: Created broadcast 0 from load at 
> NativeMethodAccessorImpl.java:-2 
> 15/06/16 08:09:16 WARN DomainSocketFactory: The short-circuit local reads 
> feature cannot be used because libhadoop cannot be loaded. 
> 15/06/16 08:09:17 ERROR RBackendHandler: load on 1 failed 
> java.lang.reflect.InvocationTargetException 
>         at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) 
>         at 
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) 
>         at 
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>  
>         at java.lang.reflect.Method.invoke(Method.java:606) 
>         at 
> org.apache.spark.api.r.RBackendHandler.handleMethodCall(RBackendHandler.scala:127)
>  
>         at 
> org.apache.spark.api.r.RBackendHandler.channelRead0(RBackendHandler.scala:74) 
>         at 
> org.apache.spark.api.r.RBackendHandler.channelRead0(RBackendHandler.scala:36) 
>         at 
> io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
>  
>         at 
> io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
>  
>         at 
> io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
>  
>         at 
> io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
>  
>         at 
> io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
>  
>         at 
> io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
>  
>         at 
> io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:163)
>  
>         at 
> io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
>  
>         at 
> io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
>  
>         at 
> io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:787)
>  
>         at 
> io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:130)
>  
>         at 
> io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511) 
>         at 
> io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
>  
>         at 
> io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382) 
>         at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354) 
>         at 
> io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:116)
>  
>         at 
> io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:137)
>  
>         at java.lang.Thread.run(Thread.java:745) 
> Caused by: org.apache.hadoop.mapred.InvalidInputException: Input path does 
> not exist: hdfs://smalldata13.hdp:8020/home/esten/ami/usaf.json 
>         at 
> org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:285)
>  
>         at 
> org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228) 
>         at 
> org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:313) 
>         at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:207) 
>         at 
> org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219) 
>         at 
> org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217) 
>         at scala.Option.getOrElse(Option.scala:120) 
>         at org.apache.spark.rdd.RDD.partitions(RDD.scala:217) 
>         at 
> org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32)
>  
>         at 
> org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219) 
>         at 
> org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217) 
>         at scala.Option.getOrElse(Option.scala:120) 
>         at org.apache.spark.rdd.RDD.partitions(RDD.scala:217) 
>         at 
> org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32)
>  
>         at 
> org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219) 
>         at 
> org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217) 
>         at scala.Option.getOrElse(Option.scala:120) 
>         at org.apache.spark.rdd.RDD.partitions(RDD.scala:217) 
>         at 
> org.apache.spark.rdd.RDD$$anonfun$treeAggregate$1.apply(RDD.scala:1069) 
>         at 
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:148)
>  
>         at 
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:109)
>  
>         at org.apache.spark.rdd.RDD.withScope(RDD.scala:286) 
>         at org.apache.spark.rdd.RDD.treeAggregate(RDD.scala:1067) 
>         at org.apache.spark.sql.json.InferSchema$.apply(InferSchema.scala:58) 
>         at 
> org.apache.spark.sql.json.JSONRelation$$anonfun$schema$1.apply(JSONRelation.scala:139)
>  
>         at 
> org.apache.spark.sql.json.JSONRelation$$anonfun$schema$1.apply(JSONRelation.scala:138)
>  
>         at scala.Option.getOrElse(Option.scala:120) 
>         at 
> org.apache.spark.sql.json.JSONRelation.schema$lzycompute(JSONRelation.scala:137)
>  
>         at 
> org.apache.spark.sql.json.JSONRelation.schema(JSONRelation.scala:137) 
>         at 
> org.apache.spark.sql.sources.LogicalRelation.<init>(LogicalRelation.scala:30) 
>         at 
> org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:120) 
>         at org.apache.spark.sql.SQLContext.load(SQLContext.scala:1230) 
>         ... 25 more 
> Error: returnStatus == 0 is not TRUE
>  
>   



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to