[ 
https://issues.apache.org/jira/browse/SPARK-5016?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14609194#comment-14609194
 ] 

Feynman Liang commented on SPARK-5016:
--------------------------------------

While this doesn't solve the high dimensionality (i.e. numFeatures) problem, 
wouldn't distributing the k Gaussians still offer a performance gain when the 
number of clusters is large?

> GaussianMixtureEM should distribute matrix inverse for large numFeatures, k
> ---------------------------------------------------------------------------
>
>                 Key: SPARK-5016
>                 URL: https://issues.apache.org/jira/browse/SPARK-5016
>             Project: Spark
>          Issue Type: Improvement
>          Components: MLlib
>    Affects Versions: 1.2.0
>            Reporter: Joseph K. Bradley
>              Labels: clustering
>
> If numFeatures or k are large, GMM EM should distribute the matrix inverse 
> computation for Gaussian initialization.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to