[ https://issues.apache.org/jira/browse/SPARK-8660?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14610972#comment-14610972 ]
Apache Spark commented on SPARK-8660: ------------------------------------- User 'Rosstin' has created a pull request for this issue: https://github.com/apache/spark/pull/7167 > Update comments that contain R statements in ml.logisticRegressionSuite > ----------------------------------------------------------------------- > > Key: SPARK-8660 > URL: https://issues.apache.org/jira/browse/SPARK-8660 > Project: Spark > Issue Type: Improvement > Components: ML > Affects Versions: 1.4.0 > Reporter: Xiangrui Meng > Assignee: somil deshmukh > Priority: Trivial > Labels: starter > Fix For: 1.5.0 > > Original Estimate: 20m > Remaining Estimate: 20m > > We put R statements as comments in unit test. However, there are two issues: > 1. JavaDoc style "/** ... */" is used instead of normal multiline comment "/* > ... */". > 2. We put a leading "*" on each line. It is hard to copy & paste the commands > to/from R and verify the result. > For example, in > https://github.com/apache/spark/blob/master/mllib/src/test/scala/org/apache/spark/ml/classification/LogisticRegressionSuite.scala#L504 > {code} > /** > * Using the following R code to load the data and train the model using > glmnet package. > * > * > library("glmnet") > * > data <- read.csv("path", header=FALSE) > * > label = factor(data$V1) > * > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5)) > * > weights = coef(glmnet(features,label, family="binomial", alpha = > 1.0, lambda = 6.0)) > * > weights > * 5 x 1 sparse Matrix of class "dgCMatrix" > * s0 > * (Intercept) -0.2480643 > * data.V2 0.0000000 > * data.V3 . > * data.V4 . > * data.V5 . > */ > {code} > should change to > {code} > /* > Using the following R code to load the data and train the model using > glmnet package. > > library("glmnet") > data <- read.csv("path", header=FALSE) > label = factor(data$V1) > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5)) > weights = coef(glmnet(features,label, family="binomial", alpha = 1.0, > lambda = 6.0)) > weights > 5 x 1 sparse Matrix of class "dgCMatrix" > s0 > (Intercept) -0.2480643 > data.V2 0.0000000 > data.V3 . > data.V4 . > data.V5 . > */ > {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org