[ https://issues.apache.org/jira/browse/SPARK-9277?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Manoj Kumar updated SPARK-9277: ------------------------------- Labels: starter (was: ) > SparseVector constructor must throw an error when declared number of elements > less than array lenght > ---------------------------------------------------------------------------------------------------- > > Key: SPARK-9277 > URL: https://issues.apache.org/jira/browse/SPARK-9277 > Project: Spark > Issue Type: Bug > Components: MLlib > Affects Versions: 1.3.1 > Reporter: Andrey Vykhodtsev > Priority: Minor > Labels: starter > Attachments: SparseVector test.html, SparseVector test.ipynb > > > I found that one can create SparseVector inconsistently and it will lead to > an Java error in runtime, for example when training LogisticRegressionWithSGD. > Here is the test case: > In [2]: > sc.version > Out[2]: > u'1.3.1' > In [13]: > from pyspark.mllib.linalg import SparseVector > from pyspark.mllib.regression import LabeledPoint > from pyspark.mllib.classification import LogisticRegressionWithSGD > In [3]: > x = SparseVector(2, {1:1, 2:2, 3:3, 4:4, 5:5}) > In [10]: > l = LabeledPoint(0, x) > In [12]: > r = sc.parallelize([l]) > In [14]: > m = LogisticRegressionWithSGD.train(r) > Error: > Py4JJavaError: An error occurred while calling > o86.trainLogisticRegressionModelWithSGD. > : org.apache.spark.SparkException: Job aborted due to stage failure: Task 7 > in stage 11.0 failed 1 times, most recent failure: Lost task 7.0 in stage > 11.0 (TID 47, localhost): java.lang.ArrayIndexOutOfBoundsException: 2 > Attached is the notebook with the scenario and the full message -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org