Damian Guy created SPARK-9340: --------------------------------- Summary: ParquetTypeConverter incorrectly handling of repeated types results in schema mismatch Key: SPARK-9340 URL: https://issues.apache.org/jira/browse/SPARK-9340 Project: Spark Issue Type: Bug Components: SQL Affects Versions: 1.4.0, 1.2.0 Reporter: Damian Guy
The way ParquetTypesConverter handles primitive repeated types results in an incompatible schema being used for querying data. For example, given a schema like so: message root { repeated int32 repeated_field; } Spark produces a read schema like: message root { optional int32 repeated_field; } These are incompatible and all attempts to read fail. In ParquetTypesConverter.toDataType: if (parquetType.isPrimitive) { toPrimitiveDataType(parquetType.asPrimitiveType, isBinaryAsString, isInt96AsTimestamp) } else {...} The if condition should also have !parquetType.isRepetition(Repetition.REPEATED) And then this case will need to be handled in the else -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org