[ https://issues.apache.org/jira/browse/SPARK-7937?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14651232#comment-14651232 ]
Apache Spark commented on SPARK-7937: ------------------------------------- User 'rxin' has created a pull request for this issue: https://github.com/apache/spark/pull/7877 > Cannot compare Hive named_struct. (when using argmax, argmin) > ------------------------------------------------------------- > > Key: SPARK-7937 > URL: https://issues.apache.org/jira/browse/SPARK-7937 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 1.4.0 > Reporter: Jianshi Huang > > Imagine the following SQL: > Intention: get last used bank account country. > > {code:sql} > select bank_account_id, > max(named_struct( > 'src_row_update_ts', unix_timestamp(src_row_update_ts,'yyyy/M/D > HH:mm:ss'), > 'bank_country', bank_country)).bank_country > from bank_account_monthly > where year_month='201502' > group by bank_account_id > {code} > => > {noformat} > Error: org.apache.spark.SparkException: Job aborted due to stage failure: > Task 94 in stage 96.0 failed 4 times, most recent failure: Lost task 94.3 in > stage 96.0 (TID 22281, xxxx): java.lang.RuntimeException: Type > StructType(StructField(src_row_update_ts,LongType,true), > StructField(bank_country,StringType,true)) does not support ordered operations > at scala.sys.package$.error(package.scala:27) > at > org.apache.spark.sql.catalyst.expressions.LessThan.ordering$lzycompute(predicates.scala:222) > at > org.apache.spark.sql.catalyst.expressions.LessThan.ordering(predicates.scala:215) > at > org.apache.spark.sql.catalyst.expressions.LessThan.eval(predicates.scala:235) > at > org.apache.spark.sql.catalyst.expressions.MaxFunction.update(aggregates.scala:147) > at > org.apache.spark.sql.execution.Aggregate$$anonfun$doExecute$1$$anonfun$7.apply(Aggregate.scala:165) > at > org.apache.spark.sql.execution.Aggregate$$anonfun$doExecute$1$$anonfun$7.apply(Aggregate.scala:149) > at > org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$17.apply(RDD.scala:686) > at > org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$17.apply(RDD.scala:686) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:244) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:244) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:70) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) > at org.apache.spark.scheduler.Task.run(Task.scala:70) > at > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:724) > {noformat} -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org