[ 
https://issues.apache.org/jira/browse/SPARK-10287?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Yin Huai updated SPARK-10287:
-----------------------------
    Description: 
I have a partitioned json table with around 2000 partitions.
{code}
val df = sqlContext.read.format("json").load("aPartitionedJsonData")
val columnStr = df.schema.map(_.name).mkString(",")
println(s"columns: $columnStr")
val hash = df
  .selectExpr(s"hash($columnStr) as hashValue")
  .groupBy()
  .sum("hashValue")
  .head()
  .getLong(0)
{code}

  was:
{code}
val df = sqlContext.read.format("json").load("aPartitionedJsonData")
val columnStr = df.schema.map(_.name).mkString(",")
println(s"columns: $columnStr")
val hash = df
  .selectExpr(s"hash($columnStr) as hashValue")
  .groupBy()
  .sum("hashValue")
  .head()
  .getLong(0)
{code}


> After processing a query using JSON data, Spark SQL continuously refreshes 
> metadata of the table
> ------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-10287
>                 URL: https://issues.apache.org/jira/browse/SPARK-10287
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 1.5.0
>            Reporter: Yin Huai
>            Priority: Blocker
>
> I have a partitioned json table with around 2000 partitions.
> {code}
> val df = sqlContext.read.format("json").load("aPartitionedJsonData")
> val columnStr = df.schema.map(_.name).mkString(",")
> println(s"columns: $columnStr")
> val hash = df
>   .selectExpr(s"hash($columnStr) as hashValue")
>   .groupBy()
>   .sum("hashValue")
>   .head()
>   .getLong(0)
> {code}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to