[
https://issues.apache.org/jira/browse/SPARK-10735?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Thomas Graves updated SPARK-10735:
----------------------------------
Summary: CatalystTypeConverters MatchError converting RDD with custom
object to dataframe (was: CatalystTypeConverters MatchError converting RDD
with customer object to dataframe)
> CatalystTypeConverters MatchError converting RDD with custom object to
> dataframe
> --------------------------------------------------------------------------------
>
> Key: SPARK-10735
> URL: https://issues.apache.org/jira/browse/SPARK-10735
> Project: Spark
> Issue Type: Bug
> Components: SQL
> Affects Versions: 1.5.0
> Reporter: Thomas Graves
>
> In spark 1.5.0 we are now seeing an exception when converting an RDD with
> custom object to a dataframe. Note this works with Spark 1.4.1.
> RDD<BasicData>
> where BasicData classhas a field ArrayList<Beacon> where Beacon is a user
> defined class now converting RDD<BasicData> to DataFrame is causing the issue:
> 15/09/21 18:53:16 ERROR executor.Executor: Managed memory leak detected; size
> = 2097152 bytes, TID = 408
> 15/09/21 18:53:16 ERROR executor.Executor: Exception in task 0.0 in stage 4.0
> (TID 408)
> scala.MatchError: foo.Beacon@5c289b39 (of class foo.Beacon)
> at
> org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:250)
>
> at
> org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:245)
>
> at
> org.apache.spark.sql.catalyst.CatalystTypeConverters$CatalystTypeConverter.toCatalyst(CatalystTypeConverters.scala:102)
> at
> org.apache.spark.sql.catalyst.CatalystTypeConverters$ArrayConverter.toCatalystImpl(CatalystTypeConverters.scala:164)
>
> at
> org.apache.spark.sql.catalyst.CatalystTypeConverters$ArrayConverter.toCatalystImpl(CatalystTypeConverters.scala:148)
>
> at
> org.apache.spark.sql.catalyst.CatalystTypeConverters$CatalystTypeConverter.toCatalyst(CatalystTypeConverters.scala:102)
> at
> org.apache.spark.sql.catalyst.CatalystTypeConverters$$anonfun$createToCatalystConverter$2.apply(CatalystTypeConverters.scala:396)
> at
> org.apache.spark.sql.SQLContext$$anonfun$9$$anonfun$apply$1$$anonfun$apply$2.apply(SQLContext.scala:494)
> at
> org.apache.spark.sql.SQLContext$$anonfun$9$$anonfun$apply$1$$anonfun$apply$2.apply(SQLContext.scala:494)
> at
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
> at
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
> at
> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
> at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
> at
> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
> at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:108)
> at
> org.apache.spark.sql.SQLContext$$anonfun$9$$anonfun$apply$1.apply(SQLContext.scala:494)
> at
> org.apache.spark.sql.SQLContext$$anonfun$9$$anonfun$apply$1.apply(SQLContext.scala:492)
> at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
> at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
> at
> org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.processInputs(TungstenAggregationIterator.scala:372)
> at
> org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.start(TungstenAggregationIterator.scala:622)
> at
> org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1.org$apache$spark$sql$execution$aggregate$TungstenAggregate$$anonfun$$executePartition$1(TungstenAggregate.scala:110)
> at
> org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119)
> at
> org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119)
> at
> org.apache.spark.rdd.MapPartitionsWithPreparationRDD.compute(MapPartitionsWithPreparationRDD.scala:64)
> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
> at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
> at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
> at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
> at
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
> at
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
> at org.apache.spark.scheduler.Task.run(Task.scala:88)
> at
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
> at java.lang.Thread.run(Thread.java:745)
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]