[ https://issues.apache.org/jira/browse/SPARK-11229?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14968662#comment-14968662 ]
Romi Kuntsman commented on SPARK-11229: --------------------------------------- [~marmbrus] it's reproducible in 1.5.1 as [~xwu0226] confirmed, shouldn't it be marked as "fixed in 1.6.0" instead of "cannot reproduce"? > NPE in JoinedRow.isNullAt when spark.shuffle.memoryFraction=0 > ------------------------------------------------------------- > > Key: SPARK-11229 > URL: https://issues.apache.org/jira/browse/SPARK-11229 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 1.5.1 > Environment: 14.04.1-Ubuntu SMP x86_64 GNU/Linux > Reporter: Romi Kuntsman > > Steps to reproduce: > 1. set spark.shuffle.memoryFraction=0 > 2. load dataframe from parquet file > 3. see it's read correctly by calling dataframe.show() > 4. call dataframe.count() > Expected behaviour: > get count of rows in dataframe > OR, if memoryFraction=0 is an invalid setting, get notified about it > Actual behaviour: > CatalystReadSupport doesn't read the schema (even thought there is one) and > then there's a NullPointerException. > Driver stacktrace: > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1283) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1271) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1270) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1270) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697) > at scala.Option.foreach(Option.scala:236) > at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:697) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1496) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1458) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1447) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) > at > org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:567) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1822) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1835) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1848) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1919) > at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:905) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108) > at org.apache.spark.rdd.RDD.withScope(RDD.scala:306) > at org.apache.spark.rdd.RDD.collect(RDD.scala:904) > at > org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:177) > at > org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1385) > at > org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1385) > at > org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56) > at > org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:1903) > at org.apache.spark.sql.DataFrame.collect(DataFrame.scala:1384) > at org.apache.spark.sql.DataFrame.count(DataFrame.scala:1402) > ... 14 more > Caused by: java.lang.NullPointerException > at > org.apache.spark.sql.catalyst.expressions.JoinedRow.isNullAt(JoinedRow.scala:70) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificMutableProjection.apply(Unknown > Source) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator$$anonfun$generateProcessRow$1.apply(TungstenAggregationIterator.scala:194) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator$$anonfun$generateProcessRow$1.apply(TungstenAggregationIterator.scala:192) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.processInputs(TungstenAggregationIterator.scala:368) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.start(TungstenAggregationIterator.scala:622) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1.org$apache$spark$sql$execution$aggregate$TungstenAggregate$$anonfun$$executePartition$1(TungstenAggregate.scala:110) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119) > at > org.apache.spark.rdd.MapPartitionsWithPreparationRDD.compute(MapPartitionsWithPreparationRDD.scala:64) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) > at org.apache.spark.scheduler.Task.run(Task.scala:88) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > Worker log: > 15/10/21 12:06:36 INFO CoarseGrainedExecutorBackend: Got assigned task 2 > 15/10/21 12:06:36 INFO Executor: Running task 0.0 in stage 1.0 (TID 2) > 15/10/21 12:06:36 INFO TorrentBroadcast: Started reading broadcast variable 2 > 15/10/21 12:06:36 INFO MemoryStore: ensureFreeSpace(5275) called with > curMem=69383, maxMem=2793500835 > 15/10/21 12:06:36 INFO MemoryStore: Block broadcast_2_piece0 stored as bytes > in memory (estimated size 5.2 KB, free 2.6 GB) > 15/10/21 12:06:36 INFO TorrentBroadcast: Reading broadcast variable 2 took 9 > ms > 15/10/21 12:06:36 INFO MemoryStore: ensureFreeSpace(10432) called with > curMem=74658, maxMem=2793500835 > 15/10/21 12:06:36 INFO MemoryStore: Block broadcast_2 stored as values in > memory (estimated size 10.2 KB, free 2.6 GB) > 15/10/21 12:06:36 INFO GenerateMutableProjection: Code generated in 70.404364 > ms > 15/10/21 12:06:36 INFO GenerateUnsafeProjection: Code generated in 6.235261 ms > 15/10/21 12:06:36 INFO GenerateMutableProjection: Code generated in 10.861097 > ms > 15/10/21 12:06:36 INFO GenerateUnsafeRowJoiner: Code generated in 5.404177 ms > 15/10/21 12:06:36 INFO GenerateUnsafeProjection: Code generated in 4.892669 ms > 15/10/21 12:06:36 INFO ParquetRelation$$anonfun$buildScan$1$$anon$1: Input > split: ParquetInputSplit{part: > file:/home/user/parquet/part-r-00001.gz.parquet start: 0 end: 178913 length: > 178913 hosts: []} > 15/10/21 12:06:36 INFO TorrentBroadcast: Started reading broadcast variable 1 > 15/10/21 12:06:36 INFO MemoryStore: ensureFreeSpace(15856) called with > curMem=85090, maxMem=2793500835 > 15/10/21 12:06:36 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes > in memory (estimated size 15.5 KB, free 2.6 GB) > 15/10/21 12:06:36 INFO TorrentBroadcast: Reading broadcast variable 1 took 9 > ms > 15/10/21 12:06:36 INFO MemoryStore: ensureFreeSpace(196360) called with > curMem=100946, maxMem=2793500835 > 15/10/21 12:06:36 INFO MemoryStore: Block broadcast_1 stored as values in > memory (estimated size 191.8 KB, free 2.6 GB) > 15/10/21 12:06:36 INFO deprecation: mapred.min.split.size is deprecated. > Instead, use mapreduce.input.fileinputformat.split.minsize > 15/10/21 12:06:36 WARN ParquetRecordReader: Can not initialize counter due to > context is not a instance of TaskInputOutputContext, but is > org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl > 15/10/21 12:06:36 INFO CatalystReadSupport: Going to read the following > fields from the Parquet file: > Parquet form: > message root { > } > Catalyst form: > StructType() > > 15/10/21 12:06:36 INFO InternalParquetRecordReader: RecordReader initialized > will read a total of 36833 records. > 15/10/21 12:06:36 INFO InternalParquetRecordReader: at row 0. reading next > block > 15/10/21 12:06:36 INFO InternalParquetRecordReader: block read in memory in 2 > ms. row count = 36833 > 15/10/21 12:06:36 ERROR Executor: Exception in task 0.0 in stage 1.0 (TID 2) > java.lang.NullPointerException > at > org.apache.spark.sql.catalyst.expressions.JoinedRow.isNullAt(JoinedRow.scala:70) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificMutableProjection.apply(Unknown > Source) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator$$anonfun$generateProcessRow$1.apply(TungstenAggregationIterator.scala:194) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator$$anonfun$generateProcessRow$1.apply(TungstenAggregationIterator.scala:192) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.processInputs(TungstenAggregationIterator.scala:368) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.start(TungstenAggregationIterator.scala:622) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1.org$apache$spark$sql$execution$aggregate$TungstenAggregate$$anonfun$$executePartition$1(TungstenAggregate.scala:110) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119) > at > org.apache.spark.rdd.MapPartitionsWithPreparationRDD.compute(MapPartitionsWithPreparationRDD.scala:64) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) > at org.apache.spark.scheduler.Task.run(Task.scala:88) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org