[ 
https://issues.apache.org/jira/browse/SPARK-11284?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Xiangrui Meng closed SPARK-11284.
---------------------------------
    Resolution: Not A Problem

> ALS produces predictions as floats and should be double
> -------------------------------------------------------
>
>                 Key: SPARK-11284
>                 URL: https://issues.apache.org/jira/browse/SPARK-11284
>             Project: Spark
>          Issue Type: Bug
>          Components: ML
>    Affects Versions: 1.5.1
>         Environment: All
>            Reporter: Dominik Dahlem
>              Labels: ml, recommender
>   Original Estimate: 1h
>  Remaining Estimate: 1h
>
> Using pyspark.ml and DataFrames, The ALS recommender cannot be evaluated 
> using the RegressionEvaluator, because of a type mis-match between the model 
> transformation and the evaluation APIs. One can work around this by casting 
> the prediction column into double before passing it into the evaluator. 
> However, this does not work with pipelines and cross validation.
> Code and traceback below:
> {code}
>         als = ALS(rank=10, maxIter=30, regParam=0.1, userCol='userID', 
> itemCol='movieID', ratingCol='rating')
>         model = als.fit(training)
>         predictions = model.transform(validation)
>         evaluator = RegressionEvaluator(predictionCol='prediction', 
> labelCol='rating')
>         validationRmse = evaluator.evaluate(predictions, 
> {evaluator.metricName: 'rmse'})
> {code}
> Traceback:
>     validationRmse = evaluator.evaluate(predictions, {evaluator.metricName: 
> 'rmse'})
>   File 
> "/Users/dominikdahlem/software/spark-1.6.0-SNAPSHOT-bin-custom-spark/python/lib/pyspark.zip/pyspark/ml/evaluation.py",
>  line 63, in evaluate
>   File 
> "/Users/dominikdahlem/software/spark-1.6.0-SNAPSHOT-bin-custom-spark/python/lib/pyspark.zip/pyspark/ml/evaluation.py",
>  line 94, in _evaluate
>   File 
> "/Users/dominikdahlem/software/spark-1.6.0-SNAPSHOT-bin-custom-spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py",
>  line 813, in __call__
>   File 
> "/Users/dominikdahlem/projects/repositories/spark/python/pyspark/sql/utils.py",
>  line 42, in deco
>     raise IllegalArgumentException(s.split(': ', 1)[1])
> pyspark.sql.utils.IllegalArgumentException: requirement failed: Column 
> prediction must be of type DoubleType but was actually FloatType.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to