[ https://issues.apache.org/jira/browse/SPARK-11284?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Xiangrui Meng closed SPARK-11284. --------------------------------- Resolution: Not A Problem > ALS produces predictions as floats and should be double > ------------------------------------------------------- > > Key: SPARK-11284 > URL: https://issues.apache.org/jira/browse/SPARK-11284 > Project: Spark > Issue Type: Bug > Components: ML > Affects Versions: 1.5.1 > Environment: All > Reporter: Dominik Dahlem > Labels: ml, recommender > Original Estimate: 1h > Remaining Estimate: 1h > > Using pyspark.ml and DataFrames, The ALS recommender cannot be evaluated > using the RegressionEvaluator, because of a type mis-match between the model > transformation and the evaluation APIs. One can work around this by casting > the prediction column into double before passing it into the evaluator. > However, this does not work with pipelines and cross validation. > Code and traceback below: > {code} > als = ALS(rank=10, maxIter=30, regParam=0.1, userCol='userID', > itemCol='movieID', ratingCol='rating') > model = als.fit(training) > predictions = model.transform(validation) > evaluator = RegressionEvaluator(predictionCol='prediction', > labelCol='rating') > validationRmse = evaluator.evaluate(predictions, > {evaluator.metricName: 'rmse'}) > {code} > Traceback: > validationRmse = evaluator.evaluate(predictions, {evaluator.metricName: > 'rmse'}) > File > "/Users/dominikdahlem/software/spark-1.6.0-SNAPSHOT-bin-custom-spark/python/lib/pyspark.zip/pyspark/ml/evaluation.py", > line 63, in evaluate > File > "/Users/dominikdahlem/software/spark-1.6.0-SNAPSHOT-bin-custom-spark/python/lib/pyspark.zip/pyspark/ml/evaluation.py", > line 94, in _evaluate > File > "/Users/dominikdahlem/software/spark-1.6.0-SNAPSHOT-bin-custom-spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py", > line 813, in __call__ > File > "/Users/dominikdahlem/projects/repositories/spark/python/pyspark/sql/utils.py", > line 42, in deco > raise IllegalArgumentException(s.split(': ', 1)[1]) > pyspark.sql.utils.IllegalArgumentException: requirement failed: Column > prediction must be of type DoubleType but was actually FloatType. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org