[ 
https://issues.apache.org/jira/browse/SPARK-10309?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14977029#comment-14977029
 ] 

Apache Spark commented on SPARK-10309:
--------------------------------------

User 'davies' has created a pull request for this issue:
https://github.com/apache/spark/pull/9241

> Some tasks failed with Unable to acquire memory
> -----------------------------------------------
>
>                 Key: SPARK-10309
>                 URL: https://issues.apache.org/jira/browse/SPARK-10309
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 1.5.0
>            Reporter: Davies Liu
>            Assignee: Davies Liu
>
> *=== Update ===*
> This is caused by a mismatch between 
> `Runtime.getRuntime.availableProcessors()` and the number of active tasks in 
> `ShuffleMemoryManager`. A quick reproduction is the following:
> {code}
> // My machine only has 8 cores
> $ bin/spark-shell --master local[32]
> scala> val df = sc.parallelize(Seq((1, 1), (2, 2))).toDF("a", "b")
> scala> df.as("x").join(df.as("y"), $"x.a" === $"y.a").count()
> Caused by: java.io.IOException: Unable to acquire 2097152 bytes of memory
>       at 
> org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.acquireNewPage(UnsafeExternalSorter.java:351)
>       at 
> org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.<init>(UnsafeExternalSorter.java:138)
>       at 
> org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.create(UnsafeExternalSorter.java:106)
>       at 
> org.apache.spark.sql.execution.UnsafeExternalRowSorter.<init>(UnsafeExternalRowSorter.java:68)
>       at 
> org.apache.spark.sql.execution.TungstenSort.org$apache$spark$sql$execution$TungstenSort$$preparePartition$1(sort.scala:120)
>       at 
> org.apache.spark.sql.execution.TungstenSort$$anonfun$doExecute$2.apply(sort.scala:143)
>       at 
> org.apache.spark.sql.execution.TungstenSort$$anonfun$doExecute$2.apply(sort.scala:143)
>       at 
> org.apache.spark.rdd.MapPartitionsWithPreparationRDD.prepare(MapPartitionsWithPreparationRDD.scala:50)
> {code}
> *=== Original ===*
> While running Q53 of TPCDS (scale = 1500) on 24 nodes cluster (12G memory on 
> executor):
> {code}
> java.io.IOException: Unable to acquire 33554432 bytes of memory
>         at 
> org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.acquireNewPage(UnsafeExternalSorter.java:368)
>         at 
> org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.<init>(UnsafeExternalSorter.java:138)
>         at 
> org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.create(UnsafeExternalSorter.java:106)
>         at 
> org.apache.spark.sql.execution.UnsafeExternalRowSorter.<init>(UnsafeExternalRowSorter.java:68)
>         at 
> org.apache.spark.sql.execution.TungstenSort.org$apache$spark$sql$execution$TungstenSort$$preparePartition$1(sort.scala:146)
>         at 
> org.apache.spark.sql.execution.TungstenSort$$anonfun$doExecute$3.apply(sort.scala:169)
>         at 
> org.apache.spark.sql.execution.TungstenSort$$anonfun$doExecute$3.apply(sort.scala:169)
>         at 
> org.apache.spark.rdd.MapPartitionsWithPreparationRDD.compute(MapPartitionsWithPreparationRDD.scala:45)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
>         at 
> org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:88)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
>         at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
>         at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
>         at 
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
>         at 
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
>         at org.apache.spark.scheduler.Task.run(Task.scala:88)
>         at 
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
>         at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>         at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>         at java.lang.Thread.run(Thread.java:745)
> {code}
> The task could finished after retry.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to