[ 
https://issues.apache.org/jira/browse/SPARK-11751?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Apache Spark reassigned SPARK-11751:
------------------------------------

    Assignee: Apache Spark

> Doc describe error in the "Spark Streaming Programming Guide" page
> ------------------------------------------------------------------
>
>                 Key: SPARK-11751
>                 URL: https://issues.apache.org/jira/browse/SPARK-11751
>             Project: Spark
>          Issue Type: Documentation
>          Components: Documentation
>    Affects Versions: 1.4.1, 1.5.0, 1.5.1, 1.5.2
>            Reporter: yangping wu
>            Assignee: Apache Spark
>            Priority: Trivial
>
> In the *Task Launching Overheads* section,
> {quote}*Task Serialization*: Using Kryo serialization for serializing tasks 
> can reduce the task sizes, and therefore reduce the time taken to send them 
> to the slaves.{quote}
> As we known *Task Serialization* is configuration by 
> *spark.closure.serializer* parameter, but currently only the Java serializer 
> is supported. If we set *spark.closure.serializer*  to 
> *org.apache.spark.serializer.KryoSerializer*, then this will throw a 
> exception as follow:
> {code}
> org.apache.spark.SparkException: Job aborted due to stage failure: Task 516 
> in stage 0.0 failed 4 times, most recent failure: Lost task 516.3 in stage 
> 0.0 (TID 21, spark-cluster.data.com): java.io.EOFException
>       at java.io.DataInputStream.readInt(DataInputStream.java:392)
>       at 
> org.apache.spark.scheduler.Task$.deserializeWithDependencies(Task.scala:188)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:192)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>       at java.lang.Thread.run(Thread.java:744)
> Driver stacktrace:
>       at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1273)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1264)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1263)
>       at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>       at 
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1263)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
>       at scala.Option.foreach(Option.scala:236)
>       at 
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:730)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1457)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1418)
>       at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
> {code}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to