[ 
https://issues.apache.org/jira/browse/SPARK-12196?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15048642#comment-15048642
 ] 

Apache Spark commented on SPARK-12196:
--------------------------------------

User 'yucai' has created a pull request for this issue:
https://github.com/apache/spark/pull/10225

> Store blocks in storage devices with hierarchy way
> --------------------------------------------------
>
>                 Key: SPARK-12196
>                 URL: https://issues.apache.org/jira/browse/SPARK-12196
>             Project: Spark
>          Issue Type: New Feature
>          Components: Spark Core
>            Reporter: yucai
>
> *Problem*
> Nowadays, users have both SSDs and HDDs. 
> SSDs have great performance, but capacity is small. HDDs have good capacity, 
> but x2-x3 lower than SSDs.
> How can we get both good?
> *Solution*
> Our idea is to build hierarchy store: use SSDs as cache and HDDs as backup 
> storage. 
> When Spark core allocates blocks for RDD (either shuffle or RDD cache), it 
> gets blocks from SSDs first, and when SSD’s useable space is less than some 
> threshold, getting blocks from HDDs.
> In our implementation, we actually go further. We support a way to build any 
> level hierarchy store access all storage medias (NVM, SSD, HDD etc.).
> *Performance*
> 1. At the best case, our solution performs the same as all SSDs.
> 2. At the worst case, like all data are spilled to HDDs, no performance 
> regression.
> 3. Compared with all HDDs, hierarchy store improves more than *_x1.86_* (it 
> could be higher, CPU reaches bottleneck in our test environment).
> 4. Compared with Tachyon, our hierarchy store still *_x1.3_* faster. Because 
> we support both RDD cache and shuffle and no extra inter process 
> communication.
> *Usage*
> 1. Configure spark.hierarchyStore.
> {code}
> spark.hierarchyStore='nvm 50GB,ssd 80GB'
> {code}
> It builds a 3 layers hierarchy store: the 1st is "nvm", the 2nd is "sdd", all 
> the rest form the last layer.
> 2. Configuration the "nvm", "ssd" location in local dir, like spark.local.dir 
> or yarn.nodemanager.local-dirs.
> {code}
> spark.local.dir=/mnt/nvm1,/mnt/ssd1,/mnt/ssd2,/mnt/ssd3,/mnt/disk1,/mnt/disk2,/mnt/disk3,/mnt/disk4,/mnt/others
> {code}
> After then, restart your Spark application, it will allocate blocks from nvm 
> first.
> When nvm's usable space is less than 50GB, it starts to allocate from ssd.
> When ssd's usable space is less than 80GB, it starts to allocate from the 
> last layer.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to