[ https://issues.apache.org/jira/browse/SPARK-7903?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Xiangrui Meng closed SPARK-7903. -------------------------------- Resolution: Duplicate > PythonUDT shouldn't get serialized on the Scala side > ---------------------------------------------------- > > Key: SPARK-7903 > URL: https://issues.apache.org/jira/browse/SPARK-7903 > Project: Spark > Issue Type: Bug > Components: PySpark, SQL > Affects Versions: 1.4.0 > Reporter: Xiangrui Meng > Assignee: Xiangrui Meng > > A round trip for a pure Python UDT should be: Python UDT -> Python SQL > internal types -> Scala/Java SQL internal types -> transformation -> > Scala/Java SQL internal types -> Python SQL internal types -> Python UDT. So > the serialization shouldn't be invoked on the Scala side if no Scala code is > applied to the UDT. > Code (from [~rams]) to reproduce this bug: > {code} > from pyspark.mllib.linalg import SparseVector > from pyspark.sql.functions import udf > from pyspark.sql.types import IntegerType > df = sqlContext.createDataFrame([(SparseVector(2, {0: 0.0}),)], ["features"]) > sz = udf(lambda s: s.size, IntegerType()) > df.select(sz(df.features).alias("sz")).collect() > {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org