Sun Rui created SPARK-12922: ------------------------------- Summary: Implement gapply() on DataFrame in SparkR Key: SPARK-12922 URL: https://issues.apache.org/jira/browse/SPARK-12922 Project: Spark Issue Type: Sub-task Components: SparkR Affects Versions: 1.6.0 Reporter: Sun Rui
gapply() applies an R function on groups grouped by one or more columns of a DataFrame, and returns a DataFrame. It is like GroupedDataSet.flatMapGroups() in the Dataset API. Two API styles are supported: 1. {code} gd <- groupBy(df, col1, ...) gapply(gd, function(grouping_key, group) {}, schema) {code} 2. {code} gapply(df, grouping_columns, function(grouping_key, group) {}, schema) {code} R function input: grouping keys value a local data.frame of this grouped data R function output: local data.frame Schema specifies the Row format of the output of the R function. It must match the R function's output. Note that map-side combination (partial aggregation) is not supported, user could do map-side combination via dapply(). -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org