[ 
https://issues.apache.org/jira/browse/SPARK-13195?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Apache Spark reassigned SPARK-13195:
------------------------------------

    Assignee:     (was: Apache Spark)

> PairDStreamFunctions.mapWithState fails in case timeout is set without 
> updating State[S]
> ----------------------------------------------------------------------------------------
>
>                 Key: SPARK-13195
>                 URL: https://issues.apache.org/jira/browse/SPARK-13195
>             Project: Spark
>          Issue Type: Bug
>          Components: Streaming
>    Affects Versions: 1.6.0
>            Reporter: Yuval Itzchakov
>
> Using the new spark mapWithState API, I've encountered a bug when setting a 
> timeout for mapWithState but no explicit state handling.
> h1. Steps to reproduce:
> 1. Create a method which conforms to the StateSpec signature, make sure to 
> not update any state inside it using *state.update*. Simply create a "pass 
> through" method, may even be empty.
> 2. Create a StateSpec object with method from step 1, which explicitly sets a 
> timeout using *StateSpec.timeout* method.
> 3. Create a DStream pipeline that uses mapWithState with the given StateSpec.
> 4. Run code using spark-submit. You'll see that the method ends up throwing 
> the following exception:
> {code}
> org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in 
> stage 136.0 failed 4 times, most recent failure: Lost task 0.3 in stage 136.0 
> (TID 176, ****): java.util.NoSuchElementException: State is not set
>       at org.apache.spark.streaming.StateImpl.get(State.scala:150)
>       at 
> org.apache.spark.streaming.rdd.MapWithStateRDDRecord$$anonfun$updateRecordWithData$1.apply(MapWithStateRDD.scala:61)
>       at 
> org.apache.spark.streaming.rdd.MapWithStateRDDRecord$$anonfun$updateRecordWithData$1.apply(MapWithStateRDD.scala:55)
>       at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>       at 
> org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
>       at 
> org.apache.spark.streaming.rdd.MapWithStateRDDRecord$.updateRecordWithData(MapWithStateRDD.scala:55)
>       at 
> org.apache.spark.streaming.rdd.MapWithStateRDD.compute(MapWithStateRDD.scala:154)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>       at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:69)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:268)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>       at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
>       at org.apache.spark.scheduler.Task.run(Task.scala:89)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>       at java.lang.Thread.run(Thread.java:745)
> {code}
> h1. Sample code to reproduce the issue:
> {code:Title=MainObject}
> import org.apache.spark.streaming._
> import org.apache.spark.{SparkConf, SparkContext}
> /**
>   * Created by yuvali on 04/02/2016.
>   */
> object Program {
>   def main(args: Array[String]): Unit = {
>     
>     val sc = new SparkConf().setAppName("mapWithState bug reproduce")
>     val sparkContext = new SparkContext(sc)
>     val ssc = new StreamingContext(sparkContext, Seconds(4))
>     val stateSpec = StateSpec.function(trackStateFunc _).timeout(Seconds(60))
>     // Create a stream that generates 1000 lines per second
>     val stream = ssc.receiverStream(new DummySource(10))
>     // Split the lines into words, and create a paired (key-value) dstream
>     val wordStream = stream.flatMap {
>       _.split(" ")
>     }.map(word => (word, 1))
>     // This represents the emitted stream from the trackStateFunc. Since we 
> emit every input record with the updated value,
>     // this stream will contain the same # of records as the input dstream.
>     val wordCountStateStream = wordStream.mapWithState(stateSpec)
>     wordCountStateStream.print()
>     ssc.remember(Minutes(1)) // To make sure data is not deleted by the time 
> we query it interactively
>     // Don't forget to set checkpoint directory
>     ssc.checkpoint("")
>     ssc.start()
>     ssc.awaitTermination()
>   }
>   def trackStateFunc(batchTime: Time, key: String, value: Option[Int], state: 
> State[Long]): Option[(String, Long)] = {
>     val sum = value.getOrElse(0).toLong + state.getOption.getOrElse(0L)
>     val output = (key, sum)
>     Some(output)
>   }
> }
> {code}
> {code:Title=DummySource}
> /**
>   * Created by yuvali on 04/02/2016.
>   */
> import org.apache.spark.storage.StorageLevel
> import scala.util.Random
> import org.apache.spark.streaming.receiver._
> class DummySource(ratePerSec: Int) extends 
> Receiver[String](StorageLevel.MEMORY_AND_DISK_2) {
>   def onStart() {
>     // Start the thread that receives data over a connection
>     new Thread("Dummy Source") {
>       override def run() { receive() }
>     }.start()
>   }
>   def onStop() {
>     // There is nothing much to do as the thread calling receive()
>     // is designed to stop by itself isStopped() returns false
>   }
>   /** Create a socket connection and receive data until receiver is stopped */
>   private def receive() {
>     while(!isStopped()) {
>       store("I am a dummy source " + Random.nextInt(10))
>       Thread.sleep((1000.toDouble / ratePerSec).toInt)
>     }
>   }
> }
> {code}
> The given issue resides in the following 
> *MapWithStateRDDRecord.updateRecordWithData*, starting line 55, in the 
> following code block:
> {code}
> dataIterator.foreach { case (key, value) =>
>       wrappedState.wrap(newStateMap.get(key))
>       val returned = mappingFunction(batchTime, key, Some(value), 
> wrappedState)
>       if (wrappedState.isRemoved) {
>         newStateMap.remove(key)
>       } else if (wrappedState.isUpdated || timeoutThresholdTime.isDefined) /* 
> <--- problem is here */ {
>         newStateMap.put(key, wrappedState.get(), batchTime.milliseconds)
>       }
>       mappedData ++= returned
> }
> {code}
> In case the stream has a timeout set, but the state wasn't set at all, the 
> "else-if" will still follow through because the timeout is defined but 
> "wrappedState" is empty and wasn't set.
> If it is mandatory to update state for each entry of *mapWithState*, then 
> this code should throw a better exception than "NoSuchElementException", 
> which doesn't really saw anything to the developer.
> I haven't provided a fix myself because I'm not familiar with the spark 
> implementation, but it seems to be there needs to either be an extra check if 
> the state is set, or as previously stated a better exception message.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to