[ https://issues.apache.org/jira/browse/SPARK-13195?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Shixiong Zhu resolved SPARK-13195. ---------------------------------- Resolution: Fixed Fix Version/s: 2.0.0 1.6.1 > PairDStreamFunctions.mapWithState fails in case timeout is set without > updating State[S] > ---------------------------------------------------------------------------------------- > > Key: SPARK-13195 > URL: https://issues.apache.org/jira/browse/SPARK-13195 > Project: Spark > Issue Type: Bug > Components: Streaming > Affects Versions: 1.6.0 > Reporter: Yuval Itzchakov > Assignee: Shixiong Zhu > Fix For: 1.6.1, 2.0.0 > > > Using the new spark mapWithState API, I've encountered a bug when setting a > timeout for mapWithState but no explicit state handling. > h1. Steps to reproduce: > 1. Create a method which conforms to the StateSpec signature, make sure to > not update any state inside it using *state.update*. Simply create a "pass > through" method, may even be empty. > 2. Create a StateSpec object with method from step 1, which explicitly sets a > timeout using *StateSpec.timeout* method. > 3. Create a DStream pipeline that uses mapWithState with the given StateSpec. > 4. Run code using spark-submit. You'll see that the method ends up throwing > the following exception: > {code} > org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in > stage 136.0 failed 4 times, most recent failure: Lost task 0.3 in stage 136.0 > (TID 176, ****): java.util.NoSuchElementException: State is not set > at org.apache.spark.streaming.StateImpl.get(State.scala:150) > at > org.apache.spark.streaming.rdd.MapWithStateRDDRecord$$anonfun$updateRecordWithData$1.apply(MapWithStateRDD.scala:61) > at > org.apache.spark.streaming.rdd.MapWithStateRDDRecord$$anonfun$updateRecordWithData$1.apply(MapWithStateRDD.scala:55) > at scala.collection.Iterator$class.foreach(Iterator.scala:727) > at > org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28) > at > org.apache.spark.streaming.rdd.MapWithStateRDDRecord$.updateRecordWithData(MapWithStateRDD.scala:55) > at > org.apache.spark.streaming.rdd.MapWithStateRDD.compute(MapWithStateRDD.scala:154) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:69) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:268) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > {code} > h1. Sample code to reproduce the issue: > {code:Title=MainObject} > import org.apache.spark.streaming._ > import org.apache.spark.{SparkConf, SparkContext} > /** > * Created by yuvali on 04/02/2016. > */ > object Program { > def main(args: Array[String]): Unit = { > > val sc = new SparkConf().setAppName("mapWithState bug reproduce") > val sparkContext = new SparkContext(sc) > val ssc = new StreamingContext(sparkContext, Seconds(4)) > val stateSpec = StateSpec.function(trackStateFunc _).timeout(Seconds(60)) > // Create a stream that generates 1000 lines per second > val stream = ssc.receiverStream(new DummySource(10)) > // Split the lines into words, and create a paired (key-value) dstream > val wordStream = stream.flatMap { > _.split(" ") > }.map(word => (word, 1)) > // This represents the emitted stream from the trackStateFunc. Since we > emit every input record with the updated value, > // this stream will contain the same # of records as the input dstream. > val wordCountStateStream = wordStream.mapWithState(stateSpec) > wordCountStateStream.print() > ssc.remember(Minutes(1)) // To make sure data is not deleted by the time > we query it interactively > // Don't forget to set checkpoint directory > ssc.checkpoint("") > ssc.start() > ssc.awaitTermination() > } > def trackStateFunc(batchTime: Time, key: String, value: Option[Int], state: > State[Long]): Option[(String, Long)] = { > val sum = value.getOrElse(0).toLong + state.getOption.getOrElse(0L) > val output = (key, sum) > Some(output) > } > } > {code} > {code:Title=DummySource} > /** > * Created by yuvali on 04/02/2016. > */ > import org.apache.spark.storage.StorageLevel > import scala.util.Random > import org.apache.spark.streaming.receiver._ > class DummySource(ratePerSec: Int) extends > Receiver[String](StorageLevel.MEMORY_AND_DISK_2) { > def onStart() { > // Start the thread that receives data over a connection > new Thread("Dummy Source") { > override def run() { receive() } > }.start() > } > def onStop() { > // There is nothing much to do as the thread calling receive() > // is designed to stop by itself isStopped() returns false > } > /** Create a socket connection and receive data until receiver is stopped */ > private def receive() { > while(!isStopped()) { > store("I am a dummy source " + Random.nextInt(10)) > Thread.sleep((1000.toDouble / ratePerSec).toInt) > } > } > } > {code} > The given issue resides in the following > *MapWithStateRDDRecord.updateRecordWithData*, starting line 55, in the > following code block: > {code} > dataIterator.foreach { case (key, value) => > wrappedState.wrap(newStateMap.get(key)) > val returned = mappingFunction(batchTime, key, Some(value), > wrappedState) > if (wrappedState.isRemoved) { > newStateMap.remove(key) > } else if (wrappedState.isUpdated || timeoutThresholdTime.isDefined) /* > <--- problem is here */ { > newStateMap.put(key, wrappedState.get(), batchTime.milliseconds) > } > mappedData ++= returned > } > {code} > In case the stream has a timeout set, but the state wasn't set at all, the > "else-if" will still follow through because the timeout is defined but > "wrappedState" is empty and wasn't set. > If it is mandatory to update state for each entry of *mapWithState*, then > this code should throw a better exception than "NoSuchElementException", > which doesn't really saw anything to the developer. > I haven't provided a fix myself because I'm not familiar with the spark > implementation, but it seems to be there needs to either be an extra check if > the state is set, or as previously stated a better exception message. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org