koert kuipers created SPARK-13363: ------------------------------------- Summary: Aggregator not working with DataFrame Key: SPARK-13363 URL: https://issues.apache.org/jira/browse/SPARK-13363 Project: Spark Issue Type: Bug Components: SQL Affects Versions: 2.0.0 Reporter: koert kuipers Priority: Minor
org.apache.spark.sql.expressions.Aggregator doc/comments says: A base class for user-defined aggregations, which can be used in [[DataFrame]] and [[Dataset]] it works well with Dataset/GroupedDataset, but i am having no luck using it with DataFrame/GroupedData. does anyone have an example how to use it with a DataFrame? in particular i would like to use it with this method in GroupedData: {noformat} def agg(expr: Column, exprs: Column*): DataFrame {noformat} clearly it should be possible, since GroupedDataset uses that very same method to do the work: {noformat} private def agg(exprs: Column*): DataFrame = groupedData.agg(withEncoder(exprs.head), exprs.tail.map(withEncoder): _*) {noformat} the trick seems to be the wrapping in withEncoder, which is private. i tried to do something like it myself, but i had no luck since it uses more private stuff in TypedColumn. anyhow, my attempt at using it in DataFrame: {noformat} val simpleSum = new SqlAggregator[Int, Int, Int] { def zero: Int = 0 // The initial value. def reduce(b: Int, a: Int) = b + a // Add an element to the running total def merge(b1: Int, b2: Int) = b1 + b2 // Merge intermediate values. def finish(b: Int) = b // Return the final result. }.toColumn val df = sc.makeRDD(1 to 3).map(i => (i, i)).toDF("k", "v") df.groupBy("k").agg(simpleSum).show {noformat} and the resulting error: {noformat} org.apache.spark.sql.AnalysisException: unresolved operator 'Aggregate [k#104], [k#104,($anon$3(),mode=Complete,isDistinct=false) AS sum#106]; at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.failAnalysis(CheckAnalysis.scala:38) at org.apache.spark.sql.catalyst.analysis.Analyzer.failAnalysis(Analyzer.scala:46) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:241) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:50) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:122) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:50) at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:46) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:34) at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:130) at org.apache.spark.sql.DataFrame$.apply(DataFrame.scala:49) {noformat} -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org