[ https://issues.apache.org/jira/browse/SPARK-13435?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Apache Spark reassigned SPARK-13435: ------------------------------------ Assignee: Apache Spark > Add Weighted Cohen's kappa to MulticlassMetrics > ----------------------------------------------- > > Key: SPARK-13435 > URL: https://issues.apache.org/jira/browse/SPARK-13435 > Project: Spark > Issue Type: Improvement > Components: MLlib > Reporter: zhengruifeng > Assignee: Apache Spark > Priority: Minor > > Add the missing Weighted Cohen's kappa to MulticlassMetrics. > Kappa is widely used in Competition and Statistics. > https://en.wikipedia.org/wiki/Cohen's_kappa > Some usage examples: > val metrics = new MulticlassMetrics(predictionAndLabels) > // The default kappa value (Unweighted kappa) > val kappa = metrics.kappa > // Three built-in weighting type ("default":unweighted, "linear":linear > weighted, "quadratic":quadratic weighted) > val kappa = metrics.kappa("quadratic") > // User-defined weighting matrix > val matrix = Matrices.dense(n, n, values) > val kappa = metrics.kappa(matrix) > // User-defined weighting function > def getWeight(i: Int, j:Int):Double = { > if (i == j) { > 0.0 > } else { > 1.0 > } > } > val kappa = metrics.kappa(getWeight) // equals to the unweighted kappa > The calculation correctness was tested on several small data, and compared to > two python's package: sklearn and ml_metrics. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org