[ 
https://issues.apache.org/jira/browse/SPARK-13435?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Apache Spark reassigned SPARK-13435:
------------------------------------

    Assignee: Apache Spark

> Add Weighted Cohen's kappa to MulticlassMetrics
> -----------------------------------------------
>
>                 Key: SPARK-13435
>                 URL: https://issues.apache.org/jira/browse/SPARK-13435
>             Project: Spark
>          Issue Type: Improvement
>          Components: MLlib
>            Reporter: zhengruifeng
>            Assignee: Apache Spark
>            Priority: Minor
>
> Add the missing Weighted Cohen's kappa to MulticlassMetrics.
> Kappa is widely used in Competition and Statistics.
> https://en.wikipedia.org/wiki/Cohen's_kappa
> Some usage examples:
> val metrics = new MulticlassMetrics(predictionAndLabels)
> // The default kappa value (Unweighted kappa)
> val kappa = metrics.kappa
> // Three built-in weighting type ("default":unweighted, "linear":linear 
> weighted, "quadratic":quadratic weighted)
> val kappa = metrics.kappa("quadratic")
> // User-defined weighting matrix
> val matrix = Matrices.dense(n, n, values)
> val kappa = metrics.kappa(matrix)
> // User-defined weighting function
> def getWeight(i: Int, j:Int):Double = {
>           if (i == j) {
>             0.0
>           } else {
>             1.0
>           }
> }
> val kappa = metrics.kappa(getWeight) // equals to the unweighted kappa
> The calculation correctness was tested on several small data, and compared to 
> two python's package:  sklearn and ml_metrics.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to