[ 
https://issues.apache.org/jira/browse/SPARK-13510?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Hong Shen updated SPARK-13510:
------------------------------
    Description: 
In our cluster, when I test spark-1.6.0 with a sql, it throw exception and 
failed.
{code}
16/02/17 15:36:03 INFO storage.ShuffleBlockFetcherIterator: Sending request for 
1 blocks (915.4 MB) from 10.196.134.220:7337
16/02/17 15:36:03 INFO shuffle.ExternalShuffleClient: External shuffle fetch 
from 10.196.134.220:7337 (executor id 122)
16/02/17 15:36:03 INFO client.TransportClient: Sending fetch chunk request 0 to 
/10.196.134.220:7337
16/02/17 15:36:36 WARN server.TransportChannelHandler: Exception in connection 
from /10.196.134.220:7337
java.lang.OutOfMemoryError: Direct buffer memory
        at java.nio.Bits.reserveMemory(Bits.java:658)
        at java.nio.DirectByteBuffer.<init>(DirectByteBuffer.java:123)
        at java.nio.ByteBuffer.allocateDirect(ByteBuffer.java:306)
        at io.netty.buffer.PoolArena$DirectArena.newChunk(PoolArena.java:645)
        at io.netty.buffer.PoolArena.allocateNormal(PoolArena.java:228)
        at io.netty.buffer.PoolArena.allocate(PoolArena.java:212)
        at io.netty.buffer.PoolArena.allocate(PoolArena.java:132)
        at 
io.netty.buffer.PooledByteBufAllocator.newDirectBuffer(PooledByteBufAllocator.java:271)
        at 
io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:155)
        at 
io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:146)
        at 
io.netty.buffer.AbstractByteBufAllocator.ioBuffer(AbstractByteBufAllocator.java:107)
        at 
io.netty.channel.AdaptiveRecvByteBufAllocator$HandleImpl.allocate(AdaptiveRecvByteBufAllocator.java:104)
        at 
io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:117)
        at 
io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
        at 
io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
        at 
io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
        at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
        at 
io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
        at java.lang.Thread.run(Thread.java:744)
16/02/17 15:36:36 ERROR client.TransportResponseHandler: Still have 1 requests 
outstanding when connection from /10.196.134.220:7337 is closed
16/02/17 15:36:36 ERROR shuffle.RetryingBlockFetcher: Failed to fetch block 
shuffle_3_81_2, and will not retry (0 retries)
{code}
  The reason is that when shuffle a big block(like 1G), task will allocate the 
same memory, it will easily throw "FetchFailedException: Direct buffer memory".
  If I add -Dio.netty.noUnsafe=true spark.executor.extraJavaOptions, it will 
throw 
{code}
java.lang.OutOfMemoryError: Java heap space
        at 
io.netty.buffer.PoolArena$HeapArena.newUnpooledChunk(PoolArena.java:607)
        at io.netty.buffer.PoolArena.allocateHuge(PoolArena.java:237)
        at io.netty.buffer.PoolArena.allocate(PoolArena.java:215)
        at io.netty.buffer.PoolArena.allocate(PoolArena.java:132)
{code}
  
  In mapreduce shuffle, it will firstly judge whether the block can cache in 
memery, but spark doesn't. 


  was:
In our cluster, when I test spark-1.6.0 with a sql, it throw exception and 
failed.
{code}
org.apache.spark.shuffle.FetchFailedException: Direct buffer memory
        at 
org.apache.spark.storage.ShuffleBlockFetcherIterator.throwFetchFailedException(ShuffleBlockFetcherIterator.scala:323)
        at 
org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:300)
        at 
org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:51)
        at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
        at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
        at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
        at 
org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32)
        at 
org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
        at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
        at 
org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:167)
        at org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:90)
        at org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:64)
        at 
org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:759)
        at 
org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:759)
{code}
  The reason is that when shuffle a big block(like 1G), task will allocate the 
same memory, it will easily throw "FetchFailedException: Direct buffer memory".
  If I add -Dio.netty.noUnsafe=true spark.executor.extraJavaOptions, it will 
throw 
{code}
java.lang.OutOfMemoryError: Java heap space
        at 
io.netty.buffer.PoolArena$HeapArena.newUnpooledChunk(PoolArena.java:607)
        at io.netty.buffer.PoolArena.allocateHuge(PoolArena.java:237)
        at io.netty.buffer.PoolArena.allocate(PoolArena.java:215)
        at io.netty.buffer.PoolArena.allocate(PoolArena.java:132)
{code}
  
  In mapreduce shuffle, it will firstly judge whether the block can cache in 
memery, but spark doesn't. 



> Shuffle may throw FetchFailedException: Direct buffer memory
> ------------------------------------------------------------
>
>                 Key: SPARK-13510
>                 URL: https://issues.apache.org/jira/browse/SPARK-13510
>             Project: Spark
>          Issue Type: Bug
>          Components: Spark Core
>    Affects Versions: 1.6.0
>            Reporter: Hong Shen
>
> In our cluster, when I test spark-1.6.0 with a sql, it throw exception and 
> failed.
> {code}
> 16/02/17 15:36:03 INFO storage.ShuffleBlockFetcherIterator: Sending request 
> for 1 blocks (915.4 MB) from 10.196.134.220:7337
> 16/02/17 15:36:03 INFO shuffle.ExternalShuffleClient: External shuffle fetch 
> from 10.196.134.220:7337 (executor id 122)
> 16/02/17 15:36:03 INFO client.TransportClient: Sending fetch chunk request 0 
> to /10.196.134.220:7337
> 16/02/17 15:36:36 WARN server.TransportChannelHandler: Exception in 
> connection from /10.196.134.220:7337
> java.lang.OutOfMemoryError: Direct buffer memory
>       at java.nio.Bits.reserveMemory(Bits.java:658)
>       at java.nio.DirectByteBuffer.<init>(DirectByteBuffer.java:123)
>       at java.nio.ByteBuffer.allocateDirect(ByteBuffer.java:306)
>       at io.netty.buffer.PoolArena$DirectArena.newChunk(PoolArena.java:645)
>       at io.netty.buffer.PoolArena.allocateNormal(PoolArena.java:228)
>       at io.netty.buffer.PoolArena.allocate(PoolArena.java:212)
>       at io.netty.buffer.PoolArena.allocate(PoolArena.java:132)
>       at 
> io.netty.buffer.PooledByteBufAllocator.newDirectBuffer(PooledByteBufAllocator.java:271)
>       at 
> io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:155)
>       at 
> io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:146)
>       at 
> io.netty.buffer.AbstractByteBufAllocator.ioBuffer(AbstractByteBufAllocator.java:107)
>       at 
> io.netty.channel.AdaptiveRecvByteBufAllocator$HandleImpl.allocate(AdaptiveRecvByteBufAllocator.java:104)
>       at 
> io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:117)
>       at 
> io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
>       at 
> io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
>       at 
> io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
>       at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
>       at 
> io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
>       at java.lang.Thread.run(Thread.java:744)
> 16/02/17 15:36:36 ERROR client.TransportResponseHandler: Still have 1 
> requests outstanding when connection from /10.196.134.220:7337 is closed
> 16/02/17 15:36:36 ERROR shuffle.RetryingBlockFetcher: Failed to fetch block 
> shuffle_3_81_2, and will not retry (0 retries)
> {code}
>   The reason is that when shuffle a big block(like 1G), task will allocate 
> the same memory, it will easily throw "FetchFailedException: Direct buffer 
> memory".
>   If I add -Dio.netty.noUnsafe=true spark.executor.extraJavaOptions, it will 
> throw 
> {code}
> java.lang.OutOfMemoryError: Java heap space
>         at 
> io.netty.buffer.PoolArena$HeapArena.newUnpooledChunk(PoolArena.java:607)
>         at io.netty.buffer.PoolArena.allocateHuge(PoolArena.java:237)
>         at io.netty.buffer.PoolArena.allocate(PoolArena.java:215)
>         at io.netty.buffer.PoolArena.allocate(PoolArena.java:132)
> {code}
>   
>   In mapreduce shuffle, it will firstly judge whether the block can cache in 
> memery, but spark doesn't. 



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to