[ https://issues.apache.org/jira/browse/SPARK-13493?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15171066#comment-15171066 ]
Apache Spark commented on SPARK-13493: -------------------------------------- User 'zuowang' has created a pull request for this issue: https://github.com/apache/spark/pull/11420 > json to DataFrame to parquet does not respect case sensitiveness > ---------------------------------------------------------------- > > Key: SPARK-13493 > URL: https://issues.apache.org/jira/browse/SPARK-13493 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 1.6.0 > Reporter: Michel Lemay > Priority: Minor > > Not sure where the problem should be fixed exactly but here it is: > {noformat} > $ spark-shell --conf spark.sql.caseSensitive=false > scala> sqlContext.getConf("spark.sql.caseSensitive") > res2: String = false > scala> val data = List("""{"field": 1}""","""{"field": 2}""","""{"field": > 3}""","""{"field": 4}""","""{"FIELD": 5}""") > scala> val jsonDF = sqlContext.read.json(sc.parallelize(data)) > scala> jsonDF.printSchema > root > |-- FIELD: long (nullable = true) > |-- field: long (nullable = true) > {noformat} > And when persisting this as parquet: > {noformat} > scala> jsonDF.write.parquet("out") > org.apache.spark.sql.AnalysisException: Reference 'FIELD' is ambiguous, could > be: FIELD#0L, FIELD#1L.; > at > org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolve(LogicalPlan.scala:287) > at > org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveChildren(LogicalPlan.scala:171) > at > org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$10$$anonfun$applyOrElse$4$$anonfun$26.apply(Analyzer.scala:471 > at > org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$10$$anonfun$applyOrElse$4$$anonfun$26.apply(Analyzer.scala:471 > at > org.apache.spark.sql.catalyst.analysis.package$.withPosition(package.scala:48) > at > org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$10$$anonfun$applyOrElse$4.applyOrElse(Analyzer.scala:471) > at > org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$10$$anonfun$applyOrElse$4.applyOrElse(Analyzer.scala:467) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:319) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:319) > at > org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:53) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:318) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionUp$1(QueryPlan.scala:107) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:117) > at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2$1.apply(QueryPlan.sc > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) > at scala.collection.immutable.List.foreach(List.scala:318) > at > scala.collection.TraversableLike$class.map(TraversableLike.scala:244) > at scala.collection.AbstractTraversable.map(Traversable.scala:105) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:121) > at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$2.apply(QueryPlan.scala:125) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at scala.collection.Iterator$class.foreach(Iterator.scala:727) > at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) > at > scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) > at > scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) > at scala.collection.AbstractIterator.to(Iterator.scala:1157) > at > scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) > at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) > at > scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) > at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:125) > at > org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$10.applyOrElse(Analyzer.scala:467) > at > org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$10.applyOrElse(Analyzer.scala:347) > at > org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:57) > at > org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:57) > at > org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:53) > at > org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:56) > at > org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:347) > at > org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:328) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:83) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:80) > at > scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111) > at scala.collection.immutable.List.foldLeft(List.scala:84) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:80) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:72) > at scala.collection.immutable.List.foreach(List.scala:318) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:72) > at > org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:36) > at > org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:36) > at > org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:34) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:133) > at org.apache.spark.sql.DataFrame$.apply(DataFrame.scala:52) > at > org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:106) > at > org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58) > at > org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56) > at > org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70) > at > org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132) > at > org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) > at > org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130) > at > org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55) > at > org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55) > at > org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:256) > at > org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:148) > at > org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:139) > at > org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:329) > {noformat} -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org