[ 
https://issues.apache.org/jira/browse/SPARK-13863?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

JESSE CHEN updated SPARK-13863:
-------------------------------
    Description: 
Testing Spark SQL using TPC queries. Query 66 returns wrong results compared to 
official result set. This is at 1GB SF (validation run).

Aggregations slightly off -- eg. JAN_SALES column of "Doors canno"  row - 
SparkSQL returns 6355232.185385704, expected 6355232.31

Actual results:
[null,null,Fairview,Williamson County,TN,United 
States,DHL,BARIAN,2001,9597806.850651741,1.1121820530080795E7,8670867.81564045,8994785.945689201,1.088724806326294E7,1.4187671518377304E7,9732598.460139751,1.9798897020946026E7,2.1007842467959404E7,2.149551364927292E7,3.479566905774999E7,3.3122997954660416E7,null,null,null,null,null,null,null,null,null,null,null,null,2.1913594697555542E7,3.2518476414670944E7,2.48856624883976E7,2.5698343830046654E7,3.373591080598068E7,3.552703167087555E7,2.5465193481492043E7,5.362323870799959E7,5.1409986978201866E7,5.415917383586836E7,9.222704311805725E7,8.343539111531019E7]
[Bad cards must make.,621234,Fairview,Williamson County,TN,United 
States,DHL,BARIAN,2001,9506753.593884468,8008140.429557085,6116769.711647987,1.1973045160133362E7,7756254.925520897,5352978.574095726,1.373399613500309E7,1.6418794411203384E7,1.7212743279764652E7,1.704270732417488E7,3.43049358570323E7,3.532416421229005E7,15.30301560102066,12.890698882477594,9.846160563729589,19.273003667109915,12.485238936569628,8.61668642427125,22.107605403121994,26.429323590150222,27.707342611261865,27.433635834765774,55.22063482847413,56.86128610521969,3.0534943928382874E7,2.4481686250203133E7,2.217871080008793E7,2.569579825610423E7,2.995490355044937E7,1.8084140250833035E7,3.0805576178061485E7,4.7156887432252884E7,5.115858869637826E7,5.5759943171424866E7,8.625354428184557E7,8.345155532035494E7]
[Conventional childr,977787,Fairview,Williamson County,TN,United 
States,DHL,BARIAN,2001,8860645.460736752,1.441581376543355E7,6761497.232810497,1.1820654735879421E7,8246260.600341797,6636877.482845306,1.1434492123092413E7,2.5673812070380323E7,2.3074206999911785E7,2.1834582007320404E7,2.6894900596512794E7,3.357509177109933E7,9.061938296108202,14.743306840276613,6.9151024024767125,12.08919195681618,8.43359606984118,6.787651587559771,11.694256645969329,26.257060147435304,23.598398219562938,22.330611889215547,27.505888906799534,34.337838170377935,2.3836085704864502E7,3.20733132298584E7,2.503790437837982E7,2.2659895963564873E7,2.175740087420273E7,2.4451608012176514E7,2.1933001734852314E7,5.59967034604629E7,5.737188052299309E7,6.208721474336243E7,8.284991027382469E7,8.897031933202875E7]
[Doors canno,294242,Fairview,Williamson County,TN,United 
States,DHL,BARIAN,2001,6355232.185385704,1.0198920296742141E7,1.0246200903741479E7,1.2209716492156029E7,8566998.262890816,8806316.75278151,9789405.6993227,1.646658496404171E7,2.6443785668474197E7,2.701604788320923E7,3.366058958298761E7,2.7462468750599384E7,21.59865751791282,34.66167405313361,34.822360178837414,41.495491779406166,29.115484067165177,29.928823053070296,33.26991285854059,55.96272783641258,89.87087386734116,91.81574310672585,114.39763726112386,93.33293258813964,2.2645142994330406E7,2.448725452685547E7,2.4925759290207863E7,3.0503655031727314E7,2.6558160276379585E7,2.0976233452690125E7,2.9895796101181984E7,5.600219855566597E7,5.348815865275085E7,7.628723580410767E7,8.248374754962921E7,8.808826726185608E7]
[Important issues liv,138504,Fairview,Williamson County,TN,United 
States,DHL,BARIAN,2001,1.1748784594717264E7,1.435130566355586E7,9896470.867572784,7990874.805492401,8879247.840401173,7362383.04259038,1.0011144724414349E7,1.7741201390372872E7,2.1346976135887742E7,1.8074978020030975E7,2.967512567988676E7,3.2545325348875403E7,84.8263197793368,103.6165429414014,71.45259969078715,57.694180713137534,64.10824120892663,53.156465102743454,72.28054586448297,128.09161750110374,154.12534032149065,130.5014874662896,214.25464737398747,234.97751219369408,2.7204167203903973E7,2.598037822457385E7,1.9943398915802002E7,2.5710421112384796E7,1.948448105346489E7,2.6346611484448195E7,2.5075158296625137E7,5.409477817043829E7,4.106673223178029E7,5.454705814340496E7,7.246596285337901E7,9.277032812079096E7]

Expected results:
+----------------------+-------------------+----------+-------------------+---------+---------------+---------------+------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+
| W_WAREHOUSE_NAME     | W_WAREHOUSE_SQ_FT | W_CITY   | W_COUNTY          | 
W_STATE | W_COUNTRY     | SHIP_CARRIERS | YEAR |      JAN_SALES |      
FEB_SALES |      MAR_SALES |      APR_SALES |      MAY_SALES |      JUN_SALES | 
     JUL_SALES |      AUG_SALES |      SEP_SALES |      OCT_SALES |      
NOV_SALES |      DEC_SALES | JAN_SALES_PER_SQ_FOOT | FEB_SALES_PER_SQ_FOOT | 
MAR_SALES_PER_SQ_FOOT | APR_SALES_PER_SQ_FOOT | MAY_SALES_PER_SQ_FOOT | 
JUN_SALES_PER_SQ_FOOT | JUL_SALES_PER_SQ_FOOT | AUG_SALES_PER_SQ_FOOT | 
SEP_SALES_PER_SQ_FOOT | OCT_SALES_PER_SQ_FOOT | NOV_SALES_PER_SQ_FOOT | 
DEC_SALES_PER_SQ_FOOT |        JAN_NET |        FEB_NET |        MAR_NET |      
  APR_NET |        MAY_NET |        JUN_NET |        JUL_NET |        AUG_NET | 
       SEP_NET |        OCT_NET |        NOV_NET |        DEC_NET |
+----------------------+-------------------+----------+-------------------+---------+---------------+---------------+------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+
| Bad cards must make. |            621234 | Fairview | Williamson County | TN  
    | United States | DHL,BARIAN    | 2001 |  9506753.46000 |  8008140.33000 |  
6116769.63000 | 11973045.15000 |  7756254.92000 |  5352978.49000 | 
13733996.10000 | 16418794.37000 | 17212743.32000 | 17042707.41000 | 
34304935.61000 | 35324164.21000 |              15.30302 |              12.89070 
|               9.84616 |              19.27300 |              12.48524 |       
        8.61669 |              22.10761 |              26.42932 |              
27.70734 |              27.43364 |              55.22063 |              
56.86129 | 30534943.77000 | 24481685.94000 | 22178710.81000 | 25695798.18000 | 
29954903.78000 | 18084140.05000 | 30805576.13000 | 47156887.22000 | 
51158588.86000 | 55759942.80000 | 86253544.16000 | 83451555.63000 |
| Conventional childr  |            977787 | Fairview | Williamson County | TN  
    | United States | DHL,BARIAN    | 2001 |  8860645.55000 | 14415813.74000 |  
6761497.23000 | 11820654.76000 |  8246260.69000 |  6636877.49000 | 
11434492.25000 | 25673812.14000 | 23074206.96000 | 21834581.94000 | 
26894900.53000 | 33575091.74000 |               9.06194 |              14.74331 
|               6.91510 |              12.08919 |               8.43360 |       
        6.78765 |              11.69426 |              26.25706 |              
23.59840 |              22.33061 |              27.50589 |              
34.33784 | 23836085.83000 | 32073313.37000 | 25037904.18000 | 22659895.86000 | 
21757401.03000 | 24451608.10000 | 21933001.85000 | 55996703.43000 | 
57371880.44000 | 62087214.51000 | 82849910.15000 | 88970319.31000 |
| Doors canno          |            294242 | Fairview | Williamson County | TN  
    | United States | DHL,BARIAN    | 2001 |  6355232.31000 | 10198920.36000 | 
10246200.97000 | 12209716.50000 |  8566998.28000 |  8806316.81000 |  
9789405.60000 | 16466584.88000 | 26443785.61000 | 27016047.80000 | 
33660589.67000 | 27462468.62000 |              21.59866 |              34.66167 
|              34.82236 |              41.49549 |              29.11548 |       
       29.92882 |              33.26991 |              55.96273 |              
89.87087 |              91.81574 |             114.39764 |              
93.33293 | 22645143.09000 | 24487254.60000 | 24925759.42000 | 30503655.27000 | 
26558160.29000 | 20976233.52000 | 29895796.09000 | 56002198.38000 | 
53488158.53000 | 76287235.46000 | 82483747.59000 | 88088266.69000 |
| Important issues liv |            138504 | Fairview | Williamson County | TN  
    | United States | DHL,BARIAN    | 2001 | 11748784.55000 | 14351305.77000 |  
9896470.93000 |  7990874.78000 |  8879247.90000 |  7362383.09000 | 
10011144.75000 | 17741201.32000 | 21346976.05000 | 18074978.16000 | 
29675125.64000 | 32545325.29000 |              84.82632 |             103.61654 
|              71.45260 |              57.69418 |              64.10824 |       
       53.15647 |              72.28055 |             128.09162 |             
154.12534 |             130.50149 |             214.25465 |             
234.97751 | 27204167.15000 | 25980378.13000 | 19943398.93000 | 25710421.13000 | 
19484481.03000 | 26346611.48000 | 25075158.43000 | 54094778.13000 | 
41066732.11000 | 54547058.28000 | 72465962.92000 | 92770328.27000 |
| [NULL]               |            [NULL] | Fairview | Williamson County | TN  
    | United States | DHL,BARIAN    | 2001 |  9597806.95000 | 11121820.57000 |  
8670867.91000 |  8994786.04000 | 10887248.09000 | 14187671.36000 |  
9732598.41000 | 19798897.07000 | 21007842.34000 | 21495513.67000 | 
34795669.17000 | 33122997.94000 |                [NULL] |                [NULL] 
|                [NULL] |                [NULL] |                [NULL] |       
         [NULL] |                [NULL] |                [NULL] |               
 [NULL] |                [NULL] |                [NULL] |                [NULL] 
| 21913594.59000 | 32518476.51000 | 24885662.72000 | 25698343.86000 | 
33735910.61000 | 35527031.58000 | 25465193.48000 | 53623238.66000 | 
51409986.76000 | 54159173.90000 | 92227043.25000 | 83435390.84000 |
+----------------------+-------------------+----------+-------------------+---------+---------------+---------------+------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+

Query used:
-- start query 66 in stream 0 using template query66.tpl and seed QUALIFICATION
  select   
         w_warehouse_name
        ,w_warehouse_sq_ft
        ,w_city
        ,w_county
        ,w_state
        ,w_country
        ,ship_carriers
        ,year
        ,sum(jan_sales) as jan_sales
        ,sum(feb_sales) as feb_sales
        ,sum(mar_sales) as mar_sales
        ,sum(apr_sales) as apr_sales
        ,sum(may_sales) as may_sales
        ,sum(jun_sales) as jun_sales
        ,sum(jul_sales) as jul_sales
        ,sum(aug_sales) as aug_sales
        ,sum(sep_sales) as sep_sales
        ,sum(oct_sales) as oct_sales
        ,sum(nov_sales) as nov_sales
        ,sum(dec_sales) as dec_sales
        ,sum(jan_sales/w_warehouse_sq_ft) as jan_sales_per_sq_foot
        ,sum(feb_sales/w_warehouse_sq_ft) as feb_sales_per_sq_foot
        ,sum(mar_sales/w_warehouse_sq_ft) as mar_sales_per_sq_foot
        ,sum(apr_sales/w_warehouse_sq_ft) as apr_sales_per_sq_foot
        ,sum(may_sales/w_warehouse_sq_ft) as may_sales_per_sq_foot
        ,sum(jun_sales/w_warehouse_sq_ft) as jun_sales_per_sq_foot
        ,sum(jul_sales/w_warehouse_sq_ft) as jul_sales_per_sq_foot
        ,sum(aug_sales/w_warehouse_sq_ft) as aug_sales_per_sq_foot
        ,sum(sep_sales/w_warehouse_sq_ft) as sep_sales_per_sq_foot
        ,sum(oct_sales/w_warehouse_sq_ft) as oct_sales_per_sq_foot
        ,sum(nov_sales/w_warehouse_sq_ft) as nov_sales_per_sq_foot
        ,sum(dec_sales/w_warehouse_sq_ft) as dec_sales_per_sq_foot
        ,sum(jan_net) as jan_net
        ,sum(feb_net) as feb_net
        ,sum(mar_net) as mar_net
        ,sum(apr_net) as apr_net
        ,sum(may_net) as may_net
        ,sum(jun_net) as jun_net
        ,sum(jul_net) as jul_net
        ,sum(aug_net) as aug_net
        ,sum(sep_net) as sep_net
        ,sum(oct_net) as oct_net
        ,sum(nov_net) as nov_net
        ,sum(dec_net) as dec_net
 from (
    select 
        w_warehouse_name
        ,w_warehouse_sq_ft
        ,w_city
        ,w_county
        ,w_state
        ,w_country
        ,concat('DHL', ',', 'BARIAN') as ship_carriers
       ,d_year as year
        ,sum(case when d_moy = 1 
                then ws_ext_sales_price* ws_quantity else 0 end) as jan_sales
        ,sum(case when d_moy = 2 
                then ws_ext_sales_price* ws_quantity else 0 end) as feb_sales
        ,sum(case when d_moy = 3 
                then ws_ext_sales_price* ws_quantity else 0 end) as mar_sales
        ,sum(case when d_moy = 4 
                then ws_ext_sales_price* ws_quantity else 0 end) as apr_sales
        ,sum(case when d_moy = 5 
                then ws_ext_sales_price* ws_quantity else 0 end) as may_sales
        ,sum(case when d_moy = 6 
                then ws_ext_sales_price* ws_quantity else 0 end) as jun_sales
        ,sum(case when d_moy = 7 
                then ws_ext_sales_price* ws_quantity else 0 end) as jul_sales
        ,sum(case when d_moy = 8 
                then ws_ext_sales_price* ws_quantity else 0 end) as aug_sales
        ,sum(case when d_moy = 9 
                then ws_ext_sales_price* ws_quantity else 0 end) as sep_sales
        ,sum(case when d_moy = 10 
                then ws_ext_sales_price* ws_quantity else 0 end) as oct_sales
        ,sum(case when d_moy = 11
                then ws_ext_sales_price* ws_quantity else 0 end) as nov_sales
        ,sum(case when d_moy = 12
                then ws_ext_sales_price* ws_quantity else 0 end) as dec_sales
        ,sum(case when d_moy = 1 
                then ws_net_paid * ws_quantity else 0 end) as jan_net
        ,sum(case when d_moy = 2
                then ws_net_paid * ws_quantity else 0 end) as feb_net
        ,sum(case when d_moy = 3 
                then ws_net_paid * ws_quantity else 0 end) as mar_net
        ,sum(case when d_moy = 4 
                then ws_net_paid * ws_quantity else 0 end) as apr_net
        ,sum(case when d_moy = 5 
                then ws_net_paid * ws_quantity else 0 end) as may_net
        ,sum(case when d_moy = 6 
                then ws_net_paid * ws_quantity else 0 end) as jun_net
        ,sum(case when d_moy = 7 
                then ws_net_paid * ws_quantity else 0 end) as jul_net
        ,sum(case when d_moy = 8 
                then ws_net_paid * ws_quantity else 0 end) as aug_net
        ,sum(case when d_moy = 9 
                then ws_net_paid * ws_quantity else 0 end) as sep_net
        ,sum(case when d_moy = 10 
                then ws_net_paid * ws_quantity else 0 end) as oct_net
        ,sum(case when d_moy = 11
                then ws_net_paid * ws_quantity else 0 end) as nov_net
        ,sum(case when d_moy = 12
                then ws_net_paid * ws_quantity else 0 end) as dec_net
     from
          web_sales
         ,warehouse
         ,date_dim
         ,time_dim
          ,ship_mode
     where
            ws_warehouse_sk =  w_warehouse_sk
        and ws_sold_date_sk = d_date_sk
        and ws_sold_time_sk = t_time_sk
        and ws_ship_mode_sk = sm_ship_mode_sk
        and d_year = 2001
        and t_time between 30838 and 30838+28800
        and sm_carrier in ('DHL','BARIAN')
     group by 
        w_warehouse_name
        ,w_warehouse_sq_ft
        ,w_city
        ,w_county
        ,w_state
        ,w_country
       ,d_year
 union all
    select 
        w_warehouse_name
        ,w_warehouse_sq_ft
        ,w_city
        ,w_county
        ,w_state
        ,w_country
        ,concat('DHL', ',', 'BARIAN') as ship_carriers
       ,d_year as year
        ,sum(case when d_moy = 1 
                then cs_sales_price* cs_quantity else 0 end) as jan_sales
        ,sum(case when d_moy = 2 
                then cs_sales_price* cs_quantity else 0 end) as feb_sales
        ,sum(case when d_moy = 3 
                then cs_sales_price* cs_quantity else 0 end) as mar_sales
        ,sum(case when d_moy = 4 
                then cs_sales_price* cs_quantity else 0 end) as apr_sales
        ,sum(case when d_moy = 5 
                then cs_sales_price* cs_quantity else 0 end) as may_sales
        ,sum(case when d_moy = 6 
                then cs_sales_price* cs_quantity else 0 end) as jun_sales
        ,sum(case when d_moy = 7 
                then cs_sales_price* cs_quantity else 0 end) as jul_sales
        ,sum(case when d_moy = 8 
                then cs_sales_price* cs_quantity else 0 end) as aug_sales
        ,sum(case when d_moy = 9 
                then cs_sales_price* cs_quantity else 0 end) as sep_sales
        ,sum(case when d_moy = 10 
                then cs_sales_price* cs_quantity else 0 end) as oct_sales
        ,sum(case when d_moy = 11
                then cs_sales_price* cs_quantity else 0 end) as nov_sales
        ,sum(case when d_moy = 12
                then cs_sales_price* cs_quantity else 0 end) as dec_sales
        ,sum(case when d_moy = 1 
                then cs_net_paid_inc_tax * cs_quantity else 0 end) as jan_net
        ,sum(case when d_moy = 2 
                then cs_net_paid_inc_tax * cs_quantity else 0 end) as feb_net
        ,sum(case when d_moy = 3 
                then cs_net_paid_inc_tax * cs_quantity else 0 end) as mar_net
        ,sum(case when d_moy = 4 
                then cs_net_paid_inc_tax * cs_quantity else 0 end) as apr_net
        ,sum(case when d_moy = 5 
                then cs_net_paid_inc_tax * cs_quantity else 0 end) as may_net
        ,sum(case when d_moy = 6 
                then cs_net_paid_inc_tax * cs_quantity else 0 end) as jun_net
        ,sum(case when d_moy = 7 
                then cs_net_paid_inc_tax * cs_quantity else 0 end) as jul_net
        ,sum(case when d_moy = 8 
                then cs_net_paid_inc_tax * cs_quantity else 0 end) as aug_net
        ,sum(case when d_moy = 9 
                then cs_net_paid_inc_tax * cs_quantity else 0 end) as sep_net
        ,sum(case when d_moy = 10 
                then cs_net_paid_inc_tax * cs_quantity else 0 end) as oct_net
        ,sum(case when d_moy = 11
                then cs_net_paid_inc_tax * cs_quantity else 0 end) as nov_net
        ,sum(case when d_moy = 12
                then cs_net_paid_inc_tax * cs_quantity else 0 end) as dec_net
     from
          catalog_sales
         ,warehouse
         ,date_dim
         ,time_dim
         ,ship_mode
     where
            cs_warehouse_sk =  w_warehouse_sk
        and cs_sold_date_sk = d_date_sk
        and cs_sold_time_sk = t_time_sk
        and cs_ship_mode_sk = sm_ship_mode_sk
        and d_year = 2001
        and t_time between 30838 and 30838+28800
        and sm_carrier in ('DHL','BARIAN')
     group by 
        w_warehouse_name
        ,w_warehouse_sq_ft
        ,w_city
        ,w_county
        ,w_state
        ,w_country
       ,d_year
 ) x
 group by 
        w_warehouse_name
        ,w_warehouse_sq_ft
        ,w_city
        ,w_county
        ,w_state
        ,w_country
        ,ship_carriers
       ,year
 order by w_warehouse_name
   limit 100;


  was:
Testing Spark SQL using TPC queries. Query 49 returns wrong results compared to 
official result set. This is at 1GB SF (validation run).

SparkSQL has right answer but in wrong order (and there is an 'order by' in the 
query).

Actual results:
store,9797,0.80000000000000000000,2,2]
[store,12641,0.81609195402298850575,3,3]
[store,6661,0.92207792207792207792,7,7]
[store,13013,0.94202898550724637681,8,8]
[store,9029,1.00000000000000000000,10,10]
[web,15597,0.66197183098591549296,3,3]
[store,14925,0.96470588235294117647,9,9]
[store,4063,1.00000000000000000000,10,10]
[catalog,8929,0.76250000000000000000,7,7]
[store,11589,0.82653061224489795918,6,6]
[store,1171,0.82417582417582417582,5,5]
[store,9471,0.77500000000000000000,1,1]
[catalog,12577,0.65591397849462365591,3,3]
[web,97,0.90361445783132530120,9,8]
[web,85,0.85714285714285714286,8,7]
[catalog,361,0.74647887323943661972,5,5]
[web,2915,0.69863013698630136986,4,4]
[web,117,0.92500000000000000000,10,9]
[catalog,9295,0.77894736842105263158,9,9]
[web,3305,0.73750000000000000000,6,16]
[catalog,16215,0.79069767441860465116,10,10]
[web,7539,0.59000000000000000000,1,1]
[catalog,17543,0.57142857142857142857,1,1]
[catalog,3411,0.71641791044776119403,4,4]
[web,11933,0.71717171717171717172,5,5]
[catalog,14513,0.63541666666666666667,2,2]
[store,15839,0.81632653061224489796,4,4]
[web,3337,0.62650602409638554217,2,2]
[web,5299,0.92708333333333333333,11,10]
[catalog,8189,0.74698795180722891566,6,6]
[catalog,14869,0.77173913043478260870,8,8]
[web,483,0.80000000000000000000,7,6]


Expected results:
+---------+-------+--------------------+-------------+---------------+
| CHANNEL |  ITEM |       RETURN_RATIO | RETURN_RANK | CURRENCY_RANK |
+---------+-------+--------------------+-------------+---------------+
| catalog | 17543 |  .5714285714285714 |           1 |             1 |
| catalog | 14513 |  .6354166666666666 |           2 |             2 |
| catalog | 12577 |  .6559139784946236 |           3 |             3 |
| catalog |  3411 |  .7164179104477611 |           4 |             4 |
| catalog |   361 |  .7464788732394366 |           5 |             5 |
| catalog |  8189 |  .7469879518072289 |           6 |             6 |
| catalog |  8929 |  .7625000000000000 |           7 |             7 |
| catalog | 14869 |  .7717391304347826 |           8 |             8 |
| catalog |  9295 |  .7789473684210526 |           9 |             9 |
| catalog | 16215 |  .7906976744186046 |          10 |            10 |
| store   |  9471 |  .7750000000000000 |           1 |             1 |
| store   |  9797 |  .8000000000000000 |           2 |             2 |
| store   | 12641 |  .8160919540229885 |           3 |             3 |
| store   | 15839 |  .8163265306122448 |           4 |             4 |
| store   |  1171 |  .8241758241758241 |           5 |             5 |
| store   | 11589 |  .8265306122448979 |           6 |             6 |
| store   |  6661 |  .9220779220779220 |           7 |             7 |
| store   | 13013 |  .9420289855072463 |           8 |             8 |
| store   | 14925 |  .9647058823529411 |           9 |             9 |
| store   |  4063 | 1.0000000000000000 |          10 |            10 |
| store   |  9029 | 1.0000000000000000 |          10 |            10 |
| web     |  7539 |  .5900000000000000 |           1 |             1 |
| web     |  3337 |  .6265060240963855 |           2 |             2 |
| web     | 15597 |  .6619718309859154 |           3 |             3 |
| web     |  2915 |  .6986301369863013 |           4 |             4 |
| web     | 11933 |  .7171717171717171 |           5 |             5 |
| web     |  3305 |  .7375000000000000 |           6 |            16 |
| web     |   483 |  .8000000000000000 |           7 |             6 |
| web     |    85 |  .8571428571428571 |           8 |             7 |
| web     |    97 |  .9036144578313253 |           9 |             8 |
| web     |   117 |  .9250000000000000 |          10 |             9 |
| web     |  5299 |  .9270833333333333 |          11 |            10 |
+---------+-------+--------------------+-------------+---------------+

Query used:
-- start query 49 in stream 0 using template query49.tpl and seed QUALIFICATION
  select  
 'web' as channel
 ,web.item
 ,web.return_ratio
 ,web.return_rank
 ,web.currency_rank
 from (
        select 
         item
        ,return_ratio
        ,currency_ratio
        ,rank() over (order by return_ratio) as return_rank
        ,rank() over (order by currency_ratio) as currency_rank
        from
        (       select ws.ws_item_sk as item
                ,(cast(sum(coalesce(wr.wr_return_quantity,0)) as decimal(15,4))/
                cast(sum(coalesce(ws.ws_quantity,0)) as decimal(15,4) )) as 
return_ratio
                ,(cast(sum(coalesce(wr.wr_return_amt,0)) as decimal(15,4))/
                cast(sum(coalesce(ws.ws_net_paid,0)) as decimal(15,4) )) as 
currency_ratio
                from 
                 web_sales ws left outer join web_returns wr 
                        on (ws.ws_order_number = wr.wr_order_number and 
                        ws.ws_item_sk = wr.wr_item_sk)
                 ,date_dim
                where 
                        wr.wr_return_amt > 10000 
                        and ws.ws_net_profit > 1
                         and ws.ws_net_paid > 0
                         and ws.ws_quantity > 0
                         and ws_sold_date_sk = d_date_sk
                         and d_year = 2001
                         and d_moy = 12
                group by ws.ws_item_sk
        ) in_web
 ) web
 where 
 (
 web.return_rank <= 10
 or
 web.currency_rank <= 10
 )
 union  
 select 
 'catalog' as channel
 ,catalog.item
 ,catalog.return_ratio
 ,catalog.return_rank
 ,catalog.currency_rank
 from (
        select 
         item
        ,return_ratio
        ,currency_ratio
        ,rank() over (order by return_ratio) as return_rank
        ,rank() over (order by currency_ratio) as currency_rank
        from
        (       select 
                cs.cs_item_sk as item
                ,(cast(sum(coalesce(cr.cr_return_quantity,0)) as decimal(15,4))/
                cast(sum(coalesce(cs.cs_quantity,0)) as decimal(15,4) )) as 
return_ratio
                ,(cast(sum(coalesce(cr.cr_return_amount,0)) as decimal(15,4))/
                cast(sum(coalesce(cs.cs_net_paid,0)) as decimal(15,4) )) as 
currency_ratio
                from 
                catalog_sales cs left outer join catalog_returns cr
                        on (cs.cs_order_number = cr.cr_order_number and 
                        cs.cs_item_sk = cr.cr_item_sk)
                ,date_dim
                where 
                        cr.cr_return_amount > 10000 
                        and cs.cs_net_profit > 1
                         and cs.cs_net_paid > 0
                         and cs.cs_quantity > 0
                         and cs_sold_date_sk = d_date_sk
                         and d_year = 2001
                         and d_moy = 12
                 group by cs.cs_item_sk
        ) in_cat
 ) catalog
 where 
 (
 catalog.return_rank <= 10
 or
 catalog.currency_rank <=10
 )
 union 
 select 
 'store' as channel
 ,store.item
 ,store.return_ratio
 ,store.return_rank
 ,store.currency_rank
 from (
        select 
         item
        ,return_ratio
        ,currency_ratio
        ,rank() over (order by return_ratio) as return_rank
        ,rank() over (order by currency_ratio) as currency_rank
        from
        (       select sts.ss_item_sk as item
                ,(cast(sum(coalesce(sr.sr_return_quantity,0)) as 
decimal(15,4))/cast(sum(coalesce(sts.ss_quantity,0)) as decimal(15,4) )) as 
return_ratio
                ,(cast(sum(coalesce(sr.sr_return_amt,0)) as 
decimal(15,4))/cast(sum(coalesce(sts.ss_net_paid,0)) as decimal(15,4) )) as 
currency_ratio
                from 
                store_sales sts left outer join store_returns sr
                        on (sts.ss_ticket_number = sr.sr_ticket_number and 
sts.ss_item_sk = sr.sr_item_sk)
                ,date_dim
                where 
                        sr.sr_return_amt > 10000 
                        and sts.ss_net_profit > 1
                         and sts.ss_net_paid > 0 
                         and sts.ss_quantity > 0
                         and ss_sold_date_sk = d_date_sk
                         and d_year = 2001 
                         and d_moy = 12
                group by sts.ss_item_sk
        ) in_store
 ) store
 where  (
 store.return_rank <= 10
 or 
 store.currency_rank <= 10
 )
 order by 1,4,5
   limit 100;
-- end query 49 in stream 0 using template query49.tpl



> TPCDS query 66 returns wrong results compared to TPC official result set 
> -------------------------------------------------------------------------
>
>                 Key: SPARK-13863
>                 URL: https://issues.apache.org/jira/browse/SPARK-13863
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 1.6.0
>            Reporter: JESSE CHEN
>
> Testing Spark SQL using TPC queries. Query 66 returns wrong results compared 
> to official result set. This is at 1GB SF (validation run).
> Aggregations slightly off -- eg. JAN_SALES column of "Doors canno"  row - 
> SparkSQL returns 6355232.185385704, expected 6355232.31
> Actual results:
> [null,null,Fairview,Williamson County,TN,United 
> States,DHL,BARIAN,2001,9597806.850651741,1.1121820530080795E7,8670867.81564045,8994785.945689201,1.088724806326294E7,1.4187671518377304E7,9732598.460139751,1.9798897020946026E7,2.1007842467959404E7,2.149551364927292E7,3.479566905774999E7,3.3122997954660416E7,null,null,null,null,null,null,null,null,null,null,null,null,2.1913594697555542E7,3.2518476414670944E7,2.48856624883976E7,2.5698343830046654E7,3.373591080598068E7,3.552703167087555E7,2.5465193481492043E7,5.362323870799959E7,5.1409986978201866E7,5.415917383586836E7,9.222704311805725E7,8.343539111531019E7]
> [Bad cards must make.,621234,Fairview,Williamson County,TN,United 
> States,DHL,BARIAN,2001,9506753.593884468,8008140.429557085,6116769.711647987,1.1973045160133362E7,7756254.925520897,5352978.574095726,1.373399613500309E7,1.6418794411203384E7,1.7212743279764652E7,1.704270732417488E7,3.43049358570323E7,3.532416421229005E7,15.30301560102066,12.890698882477594,9.846160563729589,19.273003667109915,12.485238936569628,8.61668642427125,22.107605403121994,26.429323590150222,27.707342611261865,27.433635834765774,55.22063482847413,56.86128610521969,3.0534943928382874E7,2.4481686250203133E7,2.217871080008793E7,2.569579825610423E7,2.995490355044937E7,1.8084140250833035E7,3.0805576178061485E7,4.7156887432252884E7,5.115858869637826E7,5.5759943171424866E7,8.625354428184557E7,8.345155532035494E7]
> [Conventional childr,977787,Fairview,Williamson County,TN,United 
> States,DHL,BARIAN,2001,8860645.460736752,1.441581376543355E7,6761497.232810497,1.1820654735879421E7,8246260.600341797,6636877.482845306,1.1434492123092413E7,2.5673812070380323E7,2.3074206999911785E7,2.1834582007320404E7,2.6894900596512794E7,3.357509177109933E7,9.061938296108202,14.743306840276613,6.9151024024767125,12.08919195681618,8.43359606984118,6.787651587559771,11.694256645969329,26.257060147435304,23.598398219562938,22.330611889215547,27.505888906799534,34.337838170377935,2.3836085704864502E7,3.20733132298584E7,2.503790437837982E7,2.2659895963564873E7,2.175740087420273E7,2.4451608012176514E7,2.1933001734852314E7,5.59967034604629E7,5.737188052299309E7,6.208721474336243E7,8.284991027382469E7,8.897031933202875E7]
> [Doors canno,294242,Fairview,Williamson County,TN,United 
> States,DHL,BARIAN,2001,6355232.185385704,1.0198920296742141E7,1.0246200903741479E7,1.2209716492156029E7,8566998.262890816,8806316.75278151,9789405.6993227,1.646658496404171E7,2.6443785668474197E7,2.701604788320923E7,3.366058958298761E7,2.7462468750599384E7,21.59865751791282,34.66167405313361,34.822360178837414,41.495491779406166,29.115484067165177,29.928823053070296,33.26991285854059,55.96272783641258,89.87087386734116,91.81574310672585,114.39763726112386,93.33293258813964,2.2645142994330406E7,2.448725452685547E7,2.4925759290207863E7,3.0503655031727314E7,2.6558160276379585E7,2.0976233452690125E7,2.9895796101181984E7,5.600219855566597E7,5.348815865275085E7,7.628723580410767E7,8.248374754962921E7,8.808826726185608E7]
> [Important issues liv,138504,Fairview,Williamson County,TN,United 
> States,DHL,BARIAN,2001,1.1748784594717264E7,1.435130566355586E7,9896470.867572784,7990874.805492401,8879247.840401173,7362383.04259038,1.0011144724414349E7,1.7741201390372872E7,2.1346976135887742E7,1.8074978020030975E7,2.967512567988676E7,3.2545325348875403E7,84.8263197793368,103.6165429414014,71.45259969078715,57.694180713137534,64.10824120892663,53.156465102743454,72.28054586448297,128.09161750110374,154.12534032149065,130.5014874662896,214.25464737398747,234.97751219369408,2.7204167203903973E7,2.598037822457385E7,1.9943398915802002E7,2.5710421112384796E7,1.948448105346489E7,2.6346611484448195E7,2.5075158296625137E7,5.409477817043829E7,4.106673223178029E7,5.454705814340496E7,7.246596285337901E7,9.277032812079096E7]
> Expected results:
> +----------------------+-------------------+----------+-------------------+---------+---------------+---------------+------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+
> | W_WAREHOUSE_NAME     | W_WAREHOUSE_SQ_FT | W_CITY   | W_COUNTY          | 
> W_STATE | W_COUNTRY     | SHIP_CARRIERS | YEAR |      JAN_SALES |      
> FEB_SALES |      MAR_SALES |      APR_SALES |      MAY_SALES |      JUN_SALES 
> |      JUL_SALES |      AUG_SALES |      SEP_SALES |      OCT_SALES |      
> NOV_SALES |      DEC_SALES | JAN_SALES_PER_SQ_FOOT | FEB_SALES_PER_SQ_FOOT | 
> MAR_SALES_PER_SQ_FOOT | APR_SALES_PER_SQ_FOOT | MAY_SALES_PER_SQ_FOOT | 
> JUN_SALES_PER_SQ_FOOT | JUL_SALES_PER_SQ_FOOT | AUG_SALES_PER_SQ_FOOT | 
> SEP_SALES_PER_SQ_FOOT | OCT_SALES_PER_SQ_FOOT | NOV_SALES_PER_SQ_FOOT | 
> DEC_SALES_PER_SQ_FOOT |        JAN_NET |        FEB_NET |        MAR_NET |    
>     APR_NET |        MAY_NET |        JUN_NET |        JUL_NET |        
> AUG_NET |        SEP_NET |        OCT_NET |        NOV_NET |        DEC_NET |
> +----------------------+-------------------+----------+-------------------+---------+---------------+---------------+------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+
> | Bad cards must make. |            621234 | Fairview | Williamson County | 
> TN      | United States | DHL,BARIAN    | 2001 |  9506753.46000 |  
> 8008140.33000 |  6116769.63000 | 11973045.15000 |  7756254.92000 |  
> 5352978.49000 | 13733996.10000 | 16418794.37000 | 17212743.32000 | 
> 17042707.41000 | 34304935.61000 | 35324164.21000 |              15.30302 |    
>           12.89070 |               9.84616 |              19.27300 |          
>     12.48524 |               8.61669 |              22.10761 |              
> 26.42932 |              27.70734 |              27.43364 |              
> 55.22063 |              56.86129 | 30534943.77000 | 24481685.94000 | 
> 22178710.81000 | 25695798.18000 | 29954903.78000 | 18084140.05000 | 
> 30805576.13000 | 47156887.22000 | 51158588.86000 | 55759942.80000 | 
> 86253544.16000 | 83451555.63000 |
> | Conventional childr  |            977787 | Fairview | Williamson County | 
> TN      | United States | DHL,BARIAN    | 2001 |  8860645.55000 | 
> 14415813.74000 |  6761497.23000 | 11820654.76000 |  8246260.69000 |  
> 6636877.49000 | 11434492.25000 | 25673812.14000 | 23074206.96000 | 
> 21834581.94000 | 26894900.53000 | 33575091.74000 |               9.06194 |    
>           14.74331 |               6.91510 |              12.08919 |          
>      8.43360 |               6.78765 |              11.69426 |              
> 26.25706 |              23.59840 |              22.33061 |              
> 27.50589 |              34.33784 | 23836085.83000 | 32073313.37000 | 
> 25037904.18000 | 22659895.86000 | 21757401.03000 | 24451608.10000 | 
> 21933001.85000 | 55996703.43000 | 57371880.44000 | 62087214.51000 | 
> 82849910.15000 | 88970319.31000 |
> | Doors canno          |            294242 | Fairview | Williamson County | 
> TN      | United States | DHL,BARIAN    | 2001 |  6355232.31000 | 
> 10198920.36000 | 10246200.97000 | 12209716.50000 |  8566998.28000 |  
> 8806316.81000 |  9789405.60000 | 16466584.88000 | 26443785.61000 | 
> 27016047.80000 | 33660589.67000 | 27462468.62000 |              21.59866 |    
>           34.66167 |              34.82236 |              41.49549 |          
>     29.11548 |              29.92882 |              33.26991 |              
> 55.96273 |              89.87087 |              91.81574 |             
> 114.39764 |              93.33293 | 22645143.09000 | 24487254.60000 | 
> 24925759.42000 | 30503655.27000 | 26558160.29000 | 20976233.52000 | 
> 29895796.09000 | 56002198.38000 | 53488158.53000 | 76287235.46000 | 
> 82483747.59000 | 88088266.69000 |
> | Important issues liv |            138504 | Fairview | Williamson County | 
> TN      | United States | DHL,BARIAN    | 2001 | 11748784.55000 | 
> 14351305.77000 |  9896470.93000 |  7990874.78000 |  8879247.90000 |  
> 7362383.09000 | 10011144.75000 | 17741201.32000 | 21346976.05000 | 
> 18074978.16000 | 29675125.64000 | 32545325.29000 |              84.82632 |    
>          103.61654 |              71.45260 |              57.69418 |          
>     64.10824 |              53.15647 |              72.28055 |             
> 128.09162 |             154.12534 |             130.50149 |             
> 214.25465 |             234.97751 | 27204167.15000 | 25980378.13000 | 
> 19943398.93000 | 25710421.13000 | 19484481.03000 | 26346611.48000 | 
> 25075158.43000 | 54094778.13000 | 41066732.11000 | 54547058.28000 | 
> 72465962.92000 | 92770328.27000 |
> | [NULL]               |            [NULL] | Fairview | Williamson County | 
> TN      | United States | DHL,BARIAN    | 2001 |  9597806.95000 | 
> 11121820.57000 |  8670867.91000 |  8994786.04000 | 10887248.09000 | 
> 14187671.36000 |  9732598.41000 | 19798897.07000 | 21007842.34000 | 
> 21495513.67000 | 34795669.17000 | 33122997.94000 |                [NULL] |    
>             [NULL] |                [NULL] |                [NULL] |          
>       [NULL] |                [NULL] |                [NULL] |                
> [NULL] |                [NULL] |                [NULL] |                
> [NULL] |                [NULL] | 21913594.59000 | 32518476.51000 | 
> 24885662.72000 | 25698343.86000 | 33735910.61000 | 35527031.58000 | 
> 25465193.48000 | 53623238.66000 | 51409986.76000 | 54159173.90000 | 
> 92227043.25000 | 83435390.84000 |
> +----------------------+-------------------+----------+-------------------+---------+---------------+---------------+------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+-----------------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+----------------+
> Query used:
> -- start query 66 in stream 0 using template query66.tpl and seed 
> QUALIFICATION
>   select   
>          w_warehouse_name
>       ,w_warehouse_sq_ft
>       ,w_city
>       ,w_county
>       ,w_state
>       ,w_country
>         ,ship_carriers
>         ,year
>       ,sum(jan_sales) as jan_sales
>       ,sum(feb_sales) as feb_sales
>       ,sum(mar_sales) as mar_sales
>       ,sum(apr_sales) as apr_sales
>       ,sum(may_sales) as may_sales
>       ,sum(jun_sales) as jun_sales
>       ,sum(jul_sales) as jul_sales
>       ,sum(aug_sales) as aug_sales
>       ,sum(sep_sales) as sep_sales
>       ,sum(oct_sales) as oct_sales
>       ,sum(nov_sales) as nov_sales
>       ,sum(dec_sales) as dec_sales
>       ,sum(jan_sales/w_warehouse_sq_ft) as jan_sales_per_sq_foot
>       ,sum(feb_sales/w_warehouse_sq_ft) as feb_sales_per_sq_foot
>       ,sum(mar_sales/w_warehouse_sq_ft) as mar_sales_per_sq_foot
>       ,sum(apr_sales/w_warehouse_sq_ft) as apr_sales_per_sq_foot
>       ,sum(may_sales/w_warehouse_sq_ft) as may_sales_per_sq_foot
>       ,sum(jun_sales/w_warehouse_sq_ft) as jun_sales_per_sq_foot
>       ,sum(jul_sales/w_warehouse_sq_ft) as jul_sales_per_sq_foot
>       ,sum(aug_sales/w_warehouse_sq_ft) as aug_sales_per_sq_foot
>       ,sum(sep_sales/w_warehouse_sq_ft) as sep_sales_per_sq_foot
>       ,sum(oct_sales/w_warehouse_sq_ft) as oct_sales_per_sq_foot
>       ,sum(nov_sales/w_warehouse_sq_ft) as nov_sales_per_sq_foot
>       ,sum(dec_sales/w_warehouse_sq_ft) as dec_sales_per_sq_foot
>       ,sum(jan_net) as jan_net
>       ,sum(feb_net) as feb_net
>       ,sum(mar_net) as mar_net
>       ,sum(apr_net) as apr_net
>       ,sum(may_net) as may_net
>       ,sum(jun_net) as jun_net
>       ,sum(jul_net) as jul_net
>       ,sum(aug_net) as aug_net
>       ,sum(sep_net) as sep_net
>       ,sum(oct_net) as oct_net
>       ,sum(nov_net) as nov_net
>       ,sum(dec_net) as dec_net
>  from (
>     select 
>       w_warehouse_name
>       ,w_warehouse_sq_ft
>       ,w_city
>       ,w_county
>       ,w_state
>       ,w_country
>       ,concat('DHL', ',', 'BARIAN') as ship_carriers
>        ,d_year as year
>       ,sum(case when d_moy = 1 
>               then ws_ext_sales_price* ws_quantity else 0 end) as jan_sales
>       ,sum(case when d_moy = 2 
>               then ws_ext_sales_price* ws_quantity else 0 end) as feb_sales
>       ,sum(case when d_moy = 3 
>               then ws_ext_sales_price* ws_quantity else 0 end) as mar_sales
>       ,sum(case when d_moy = 4 
>               then ws_ext_sales_price* ws_quantity else 0 end) as apr_sales
>       ,sum(case when d_moy = 5 
>               then ws_ext_sales_price* ws_quantity else 0 end) as may_sales
>       ,sum(case when d_moy = 6 
>               then ws_ext_sales_price* ws_quantity else 0 end) as jun_sales
>       ,sum(case when d_moy = 7 
>               then ws_ext_sales_price* ws_quantity else 0 end) as jul_sales
>       ,sum(case when d_moy = 8 
>               then ws_ext_sales_price* ws_quantity else 0 end) as aug_sales
>       ,sum(case when d_moy = 9 
>               then ws_ext_sales_price* ws_quantity else 0 end) as sep_sales
>       ,sum(case when d_moy = 10 
>               then ws_ext_sales_price* ws_quantity else 0 end) as oct_sales
>       ,sum(case when d_moy = 11
>               then ws_ext_sales_price* ws_quantity else 0 end) as nov_sales
>       ,sum(case when d_moy = 12
>               then ws_ext_sales_price* ws_quantity else 0 end) as dec_sales
>       ,sum(case when d_moy = 1 
>               then ws_net_paid * ws_quantity else 0 end) as jan_net
>       ,sum(case when d_moy = 2
>               then ws_net_paid * ws_quantity else 0 end) as feb_net
>       ,sum(case when d_moy = 3 
>               then ws_net_paid * ws_quantity else 0 end) as mar_net
>       ,sum(case when d_moy = 4 
>               then ws_net_paid * ws_quantity else 0 end) as apr_net
>       ,sum(case when d_moy = 5 
>               then ws_net_paid * ws_quantity else 0 end) as may_net
>       ,sum(case when d_moy = 6 
>               then ws_net_paid * ws_quantity else 0 end) as jun_net
>       ,sum(case when d_moy = 7 
>               then ws_net_paid * ws_quantity else 0 end) as jul_net
>       ,sum(case when d_moy = 8 
>               then ws_net_paid * ws_quantity else 0 end) as aug_net
>       ,sum(case when d_moy = 9 
>               then ws_net_paid * ws_quantity else 0 end) as sep_net
>       ,sum(case when d_moy = 10 
>               then ws_net_paid * ws_quantity else 0 end) as oct_net
>       ,sum(case when d_moy = 11
>               then ws_net_paid * ws_quantity else 0 end) as nov_net
>       ,sum(case when d_moy = 12
>               then ws_net_paid * ws_quantity else 0 end) as dec_net
>      from
>           web_sales
>          ,warehouse
>          ,date_dim
>          ,time_dim
>         ,ship_mode
>      where
>             ws_warehouse_sk =  w_warehouse_sk
>         and ws_sold_date_sk = d_date_sk
>         and ws_sold_time_sk = t_time_sk
>       and ws_ship_mode_sk = sm_ship_mode_sk
>         and d_year = 2001
>         and t_time between 30838 and 30838+28800
>       and sm_carrier in ('DHL','BARIAN')
>      group by 
>         w_warehouse_name
>       ,w_warehouse_sq_ft
>       ,w_city
>       ,w_county
>       ,w_state
>       ,w_country
>        ,d_year
>  union all
>     select 
>       w_warehouse_name
>       ,w_warehouse_sq_ft
>       ,w_city
>       ,w_county
>       ,w_state
>       ,w_country
>       ,concat('DHL', ',', 'BARIAN') as ship_carriers
>        ,d_year as year
>       ,sum(case when d_moy = 1 
>               then cs_sales_price* cs_quantity else 0 end) as jan_sales
>       ,sum(case when d_moy = 2 
>               then cs_sales_price* cs_quantity else 0 end) as feb_sales
>       ,sum(case when d_moy = 3 
>               then cs_sales_price* cs_quantity else 0 end) as mar_sales
>       ,sum(case when d_moy = 4 
>               then cs_sales_price* cs_quantity else 0 end) as apr_sales
>       ,sum(case when d_moy = 5 
>               then cs_sales_price* cs_quantity else 0 end) as may_sales
>       ,sum(case when d_moy = 6 
>               then cs_sales_price* cs_quantity else 0 end) as jun_sales
>       ,sum(case when d_moy = 7 
>               then cs_sales_price* cs_quantity else 0 end) as jul_sales
>       ,sum(case when d_moy = 8 
>               then cs_sales_price* cs_quantity else 0 end) as aug_sales
>       ,sum(case when d_moy = 9 
>               then cs_sales_price* cs_quantity else 0 end) as sep_sales
>       ,sum(case when d_moy = 10 
>               then cs_sales_price* cs_quantity else 0 end) as oct_sales
>       ,sum(case when d_moy = 11
>               then cs_sales_price* cs_quantity else 0 end) as nov_sales
>       ,sum(case when d_moy = 12
>               then cs_sales_price* cs_quantity else 0 end) as dec_sales
>       ,sum(case when d_moy = 1 
>               then cs_net_paid_inc_tax * cs_quantity else 0 end) as jan_net
>       ,sum(case when d_moy = 2 
>               then cs_net_paid_inc_tax * cs_quantity else 0 end) as feb_net
>       ,sum(case when d_moy = 3 
>               then cs_net_paid_inc_tax * cs_quantity else 0 end) as mar_net
>       ,sum(case when d_moy = 4 
>               then cs_net_paid_inc_tax * cs_quantity else 0 end) as apr_net
>       ,sum(case when d_moy = 5 
>               then cs_net_paid_inc_tax * cs_quantity else 0 end) as may_net
>       ,sum(case when d_moy = 6 
>               then cs_net_paid_inc_tax * cs_quantity else 0 end) as jun_net
>       ,sum(case when d_moy = 7 
>               then cs_net_paid_inc_tax * cs_quantity else 0 end) as jul_net
>       ,sum(case when d_moy = 8 
>               then cs_net_paid_inc_tax * cs_quantity else 0 end) as aug_net
>       ,sum(case when d_moy = 9 
>               then cs_net_paid_inc_tax * cs_quantity else 0 end) as sep_net
>       ,sum(case when d_moy = 10 
>               then cs_net_paid_inc_tax * cs_quantity else 0 end) as oct_net
>       ,sum(case when d_moy = 11
>               then cs_net_paid_inc_tax * cs_quantity else 0 end) as nov_net
>       ,sum(case when d_moy = 12
>               then cs_net_paid_inc_tax * cs_quantity else 0 end) as dec_net
>      from
>           catalog_sales
>          ,warehouse
>          ,date_dim
>          ,time_dim
>        ,ship_mode
>      where
>             cs_warehouse_sk =  w_warehouse_sk
>         and cs_sold_date_sk = d_date_sk
>         and cs_sold_time_sk = t_time_sk
>       and cs_ship_mode_sk = sm_ship_mode_sk
>         and d_year = 2001
>         and t_time between 30838 and 30838+28800
>       and sm_carrier in ('DHL','BARIAN')
>      group by 
>         w_warehouse_name
>       ,w_warehouse_sq_ft
>       ,w_city
>       ,w_county
>       ,w_state
>       ,w_country
>        ,d_year
>  ) x
>  group by 
>         w_warehouse_name
>       ,w_warehouse_sq_ft
>       ,w_city
>       ,w_county
>       ,w_state
>       ,w_country
>       ,ship_carriers
>        ,year
>  order by w_warehouse_name
>    limit 100;



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to