[ https://issues.apache.org/jira/browse/SYSTEMML-1583?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16000968#comment-16000968 ]
Frederick Reiss commented on SYSTEMML-1583: ------------------------------------------- I presume that the conversion from a .caffemodel file to our binary block format is bottlenecked on the I/O system, is it not? Back-of-the-envelope, even large models of hundreds of megabytes should take less than a second to convert. I recommend skipping the proprietary binary coefficient format and disk layout. If you need to generate the files in the background as a short-term expedient, that's ok for now, but at least don't force the user to create and manage them. And let's use the actual Caffe model zoo at [https://github.com/BVLC/caffe/wiki/Model-Zoo], not create an out-of-date partial copy on Github. > Implement converter in Python to convert caffemodel in SystemML format > ---------------------------------------------------------------------- > > Key: SYSTEMML-1583 > URL: https://issues.apache.org/jira/browse/SYSTEMML-1583 > Project: SystemML > Issue Type: Sub-task > Reporter: Niketan Pansare > Assignee: Arvind Surve > > Ideally, this converter shouldnot require the caffe to be installed. Please > see > http://stackoverflow.com/questions/37572948/extracting-weights-from-caffemodel-without-caffe-installed-in-python > An example code to convert a caffe model to csv if caffe is installed: > {code} > import caffe > import numpy as np > #net = > caffe.Net('/home/biuser/nike/barista/VGG_ILSVRC_19_layers_train_val.prototxt', > caffe.TEST) > net = > caffe.Net('/home/biuser/VGG_trained_models/VGG_ILSVRC_19_layers_deploy.prototxt', > '/home/biuser/VGG_trained_models/VGG_ILSVRC_19_layers.caffemodel', > caffe.TEST) > #surgery.transplant(net, base_net) > for l in [ "conv1_1", "conv1_2", "conv2_1", "conv2_2", "conv3_1", "conv3_2", > "conv3_3", "conv3_4", "conv4_1", "conv4_2", "conv4_3", "conv4_4", "conv5_1", > "conv5_2", "conv5_3", "conv5_4", "fc6", "fc7", "fc8" ]: > w = net.params[l][0].data > w = w.reshape(w.shape[0], -1) > b = net.params[l][1].data > b = b.reshape(b.shape[0], -1) > # You may have to reshape it for fc layers > np.savetxt("VGG_trained_models/" + l + "_weight.csv", w, > delimiter=",") > np.savetxt("VGG_trained_models/" + l + "_bias.csv", b, delimiter=",") > {code} > Here is an example pyspark script to test this JIRA: > {code} > from systemml.mllearn import Caffe2DML > from pyspark.sql import SQLContext > import numpy as np > import urllib, os, scipy.ndimage > from PIL import Image > import systemml as sml > # ImageNet specific parameters > img_shape = (3, 224, 224) > # Downloads a jpg image, resizes it to 224 and return as numpy array in N X > CHW format > url = > 'https://upload.wikimedia.org/wikipedia/commons/thumb/5/58/MountainLion.jpg/312px-MountainLion.jpg' > outFile = 'test.jpg' > urllib.urlretrieve(url, outFile) > input_image = sml.convertImageToNumPyArr(Image.open(outFile), > img_shape=img_shape) > # Download the ResNet network > import urllib > urllib.urlretrieve('https://raw.githubusercontent.com/niketanpansare/model_zoo/master/caffe/vision/resnet/ilsvrc12/ResNet_50_network.proto', > 'ResNet_50_network.proto') > urllib.urlretrieve('https://raw.githubusercontent.com/niketanpansare/model_zoo/master/caffe/vision/resnet/ilsvrc12/ResNet_50_solver.proto', > 'ResNet_50_solver.proto') > home_dir = os.path.expanduser('~') > # let's assume that this function is implemented as > saveAsBinaryBlock(inputCaffeModel, outputDir) > resnet_pretrained_weight_dir = os.path.join(home_dir, 'model_zoo', 'caffe', > 'vision', 'resnet', 'ilsvrc12', 'ResNet_50_pretrained_weights') > urllib.urlretrieve('https://deepdetect.com/models/resnet/ResNet-50-model.caffemodel', > 'ResNet-50-model.caffemodel') > ####################################################################### > # To be implemented as part of this JIRA > sml.saveAsBinaryBlock('ResNet-50-model.caffemodel', > resnet_pretrained_weight_dir) > ####################################################################### > resnet = Caffe2DML(sqlCtx, solver='ResNet_50_solver.proto', > weights=resnet_pretrained_weight_dir, input_shape=img_shape) > resnet.predict(input_image) > # This should return array(['cougar, puma, catamount, mountain lion, painter, > panther, Felis '], dtype='|S64') > {code} -- This message was sent by Atlassian JIRA (v6.3.15#6346)