[ https://issues.apache.org/jira/browse/LUCENE-826?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#action_12478694 ]
Karl Wettin commented on LUCENE-826: ------------------------------------ Foot note: The diffrence between this and the Nutch gram-based language identifier is quite a bit. For a starter this calculate the vertices on full words, edge-grams and bi-grams where the two charaters are the same. The frequency is normalized against the text size. The same goes for analysis at classification time. The n most important (feature selection using ranked information gain) tokens are selected for consideration by the classifier, currently 200 (out of 1000 per language) per registred language. So whis the default test (5 languages) there are 1000 tokens. It is really speedy on my dual core. > Language detector > ----------------- > > Key: LUCENE-826 > URL: https://issues.apache.org/jira/browse/LUCENE-826 > Project: Lucene - Java > Issue Type: New Feature > Reporter: Karl Wettin > Assigned To: Karl Wettin > Attachments: ld.tar.gz > > > A formula 1A token/ngram-based language detector. Requires a paragraph of > text to avoid false positive classifications. > Depends on contrib/analyzers/ngrams for tokenization, Weka for classification > (logistic support vector models) feature selection and normalization of token > freuencies. Optionally Wikipedia and NekoHTML for training data harvesting. > Initialized like this: > {code} > LanguageRoot root = new LanguageRoot(new > File("documentClassifier/language root")); > root.addBranch("uralic"); > root.addBranch("fino-ugric", "uralic"); > root.addBranch("ugric", "uralic"); > root.addLanguage("fino-ugric", "fin", "finnish", "fi", "Suomi"); > root.addBranch("proto-indo european"); > root.addBranch("germanic", "proto-indo european"); > root.addBranch("northern germanic", "germanic"); > root.addLanguage("northern germanic", "dan", "danish", "da", "Danmark"); > root.addLanguage("northern germanic", "nor", "norwegian", "no", "Norge"); > root.addLanguage("northern germanic", "swe", "swedish", "sv", "Sverige"); > root.addBranch("west germanic", "germanic"); > root.addLanguage("west germanic", "eng", "english", "en", "UK"); > root.mkdirs(); > LanguageClassifier classifier = new LanguageClassifier(root); > if (!new File(root.getDataPath(), "trainingData.arff").exists()) { > classifier.compileTrainingData(); // from wikipedia > } > classifier.buildClassifier(); > {code} > Training set build from Wikipedia is the pages describing the home country of > each registred language in the language to train. Above example pass this > test: > (testEquals is the same as assertEquals, just not required. Only one of them > fail, see comment.) > {code} > assertEquals("swe", classifier.classify(sweden_in_swedish).getISO()); > testEquals("swe", classifier.classify(norway_in_swedish).getISO()); > testEquals("swe", classifier.classify(denmark_in_swedish).getISO()); > testEquals("swe", classifier.classify(finland_in_swedish).getISO()); > testEquals("swe", classifier.classify(uk_in_swedish).getISO()); > testEquals("nor", classifier.classify(sweden_in_norwegian).getISO()); > assertEquals("nor", classifier.classify(norway_in_norwegian).getISO()); > testEquals("nor", classifier.classify(denmark_in_norwegian).getISO()); > testEquals("nor", classifier.classify(finland_in_norwegian).getISO()); > testEquals("nor", classifier.classify(uk_in_norwegian).getISO()); > testEquals("fin", classifier.classify(sweden_in_finnish).getISO()); > testEquals("fin", classifier.classify(norway_in_finnish).getISO()); > testEquals("fin", classifier.classify(denmark_in_finnish).getISO()); > assertEquals("fin", classifier.classify(finland_in_finnish).getISO()); > testEquals("fin", classifier.classify(uk_in_finnish).getISO()); > testEquals("dan", classifier.classify(sweden_in_danish).getISO()); > // it is ok that this fails. dan and nor are very similar, and the > document about norway in danish is very small. > testEquals("dan", classifier.classify(norway_in_danish).getISO()); > assertEquals("dan", classifier.classify(denmark_in_danish).getISO()); > testEquals("dan", classifier.classify(finland_in_danish).getISO()); > testEquals("dan", classifier.classify(uk_in_danish).getISO()); > testEquals("eng", classifier.classify(sweden_in_english).getISO()); > testEquals("eng", classifier.classify(norway_in_english).getISO()); > testEquals("eng", classifier.classify(denmark_in_english).getISO()); > testEquals("eng", classifier.classify(finland_in_english).getISO()); > assertEquals("eng", classifier.classify(uk_in_english).getISO()); > {code} > I don't know how well it works on lots of lanugages, but this fits my needs > for now. I'll try do more work on considering the language trees when > classifying. > It takes a bit of time and RAM to build the training data, so the patch > contains a pre-compiled arff-file. -- This message is automatically generated by JIRA. - You can reply to this email to add a comment to the issue online. --------------------------------------------------------------------- To unsubscribe, e-mail: [EMAIL PROTECTED] For additional commands, e-mail: [EMAIL PROTECTED]