[ 
https://issues.apache.org/jira/browse/ARROW-11007?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17279664#comment-17279664
 ] 

Antoine Pitrou commented on ARROW-11007:
----------------------------------------

As you can see, the memory was returned to the allocator ("0 allocated"). The 
allocator is then free to return those pages to the OS or not.

Also, how is "Mem usage" measured in your script?

> [Python] Memory leak in pq.read_table and table.to_pandas
> ---------------------------------------------------------
>
>                 Key: ARROW-11007
>                 URL: https://issues.apache.org/jira/browse/ARROW-11007
>             Project: Apache Arrow
>          Issue Type: Bug
>          Components: Python
>    Affects Versions: 2.0.0
>            Reporter: Michael Peleshenko
>            Priority: Major
>
> While upgrading our application to use pyarrow 2.0.0 instead of 0.12.1, we 
> observed a memory leak in the read_table and to_pandas methods. See below for 
> sample code to reproduce it. Memory does not seem to be returned after 
> deleting the table and df as it was in pyarrow 0.12.1.
> *Sample Code*
> {code:python}
> import io
> import pandas as pd
> import pyarrow as pa
> import pyarrow.parquet as pq
> from memory_profiler import profile
> @profile
> def read_file(f):
>     table = pq.read_table(f)
>     df = table.to_pandas(strings_to_categorical=True)
>     del table
>     del df
> def main():
>     rows = 2000000
>     df = pd.DataFrame({
>         "string": ["test"] * rows,
>         "int": [5] * rows,
>         "float": [2.0] * rows,
>     })
>     table = pa.Table.from_pandas(df, preserve_index=False)
>     parquet_stream = io.BytesIO()
>     pq.write_table(table, parquet_stream)
>     for i in range(3):
>         parquet_stream.seek(0)
>         read_file(parquet_stream)
> if __name__ == '__main__':
>     main()
> {code}
> *Python 3.8.5 (conda), pyarrow 2.0.0 (pip), pandas 1.1.2 (pip) Logs*
> {code:java}
> Filename: C:/run_pyarrow_memoy_leak_sample.py
> Line #    Mem usage    Increment  Occurences   Line Contents
> ============================================================
>      9    161.7 MiB    161.7 MiB           1   @profile
>     10                                         def read_file(f):
>     11    212.1 MiB     50.4 MiB           1       table = pq.read_table(f)
>     12    258.2 MiB     46.1 MiB           1       df = 
> table.to_pandas(strings_to_categorical=True)
>     13    258.2 MiB      0.0 MiB           1       del table
>     14    256.3 MiB     -1.9 MiB           1       del df
> Filename: C:/run_pyarrow_memoy_leak_sample.py
> Line #    Mem usage    Increment  Occurences   Line Contents
> ============================================================
>      9    256.3 MiB    256.3 MiB           1   @profile
>     10                                         def read_file(f):
>     11    279.2 MiB     23.0 MiB           1       table = pq.read_table(f)
>     12    322.2 MiB     43.0 MiB           1       df = 
> table.to_pandas(strings_to_categorical=True)
>     13    322.2 MiB      0.0 MiB           1       del table
>     14    320.3 MiB     -1.9 MiB           1       del df
> Filename: C:/run_pyarrow_memoy_leak_sample.py
> Line #    Mem usage    Increment  Occurences   Line Contents
> ============================================================
>      9    320.3 MiB    320.3 MiB           1   @profile
>     10                                         def read_file(f):
>     11    326.9 MiB      6.5 MiB           1       table = pq.read_table(f)
>     12    361.7 MiB     34.8 MiB           1       df = 
> table.to_pandas(strings_to_categorical=True)
>     13    361.7 MiB      0.0 MiB           1       del table
>     14    359.8 MiB     -1.9 MiB           1       del df
> {code}
> *Python 3.5.6 (conda), pyarrow 0.12.1 (pip), pandas 0.24.1 (pip) Logs*
> {code:java}
> Filename: C:/run_pyarrow_memoy_leak_sample.py
> Line #    Mem usage    Increment  Occurences   Line Contents
> ============================================================
>      9    138.4 MiB    138.4 MiB           1   @profile
>     10                                         def read_file(f):
>     11    186.2 MiB     47.8 MiB           1       table = pq.read_table(f)
>     12    219.2 MiB     33.0 MiB           1       df = 
> table.to_pandas(strings_to_categorical=True)
>     13    171.7 MiB    -47.5 MiB           1       del table
>     14    139.3 MiB    -32.4 MiB           1       del df
> Filename: C:/run_pyarrow_memoy_leak_sample.py
> Line #    Mem usage    Increment  Occurences   Line Contents
> ============================================================
>      9    139.3 MiB    139.3 MiB           1   @profile
>     10                                         def read_file(f):
>     11    186.8 MiB     47.5 MiB           1       table = pq.read_table(f)
>     12    219.2 MiB     32.4 MiB           1       df = 
> table.to_pandas(strings_to_categorical=True)
>     13    171.5 MiB    -47.7 MiB           1       del table
>     14    139.1 MiB    -32.4 MiB           1       del df
> Filename: C:/run_pyarrow_memoy_leak_sample.py
> Line #    Mem usage    Increment  Occurences   Line Contents
> ============================================================
>      9    139.1 MiB    139.1 MiB           1   @profile
>     10                                         def read_file(f):
>     11    186.8 MiB     47.7 MiB           1       table = pq.read_table(f)
>     12    219.2 MiB     32.4 MiB           1       df = 
> table.to_pandas(strings_to_categorical=True)
>     13    171.8 MiB    -47.5 MiB           1       del table
>     14    139.3 MiB    -32.4 MiB           1       del df
> {code}



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to