[
https://issues.apache.org/jira/browse/KAFKA-17182?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Kirk True updated KAFKA-17182:
------------------------------
Description:
h1. Background
{{Consumer}} implementations fetch data from the cluster and temporarily buffer
it in memory until the user next calls {{{}Consumer.poll(){}}}. When a fetch
request is being generated, partitions that already have buffered data are not
included in the fetch request.
The {{ClassicKafkaConsumer}} performs much of its fetch logic and network I/O
in the application thread. On {{{}poll(){}}}, if there is any locally-buffered
data, the {{ClassicKafkaConsumer}} does not fetch _any_ new data and simply
returns the buffered data to the user from {{{}poll(){}}}.
On the other hand, the {{AsyncKafkaConsumer}} consumer splits its logic and
network I/O between two threads, which results in a potential race condition
during fetch. The {{AsyncKafkaConsumer}} also checks for buffered data on its
application thread. If it finds there is none, it signals the background thread
to create a fetch request. However, it's possible for the background thread to
receive data from a previous fetch and buffer it before the fetch request logic
starts. When that occurs, as the background thread creates a new fetch request,
it skips any buffered data, which has the unintended result that those
partitions get added to the fetch request's "to remove" set. This signals to
the broker to remove those partitions from its internal cache.
This issue is technically possible in the {{ClassicKafkaConsumer}} too, since
the heartbeat thread performs network I/O in addition to the application
thread. However, because of the frequency at which the
{{{}AsyncKafkaConsumer{}}}'s background thread runs, it is ~100x more likely to
happen.
h1. Options
The core decision is: what should the background thread do if it is asked to
create a fetch request and it discovers there's buffered data. There were
multiple proposals to address this issue in the {{{}AsyncKafkaConsumer{}}}.
Among them are:
# The background thread should omit buffered partitions from the fetch request
as before (this is the existing behavior)
# The background thread should skip the fetch request generation entirely if
there are _any_ buffered partitions
# The background thread should include buffered partitions in the fetch
request, but use a small “max bytes” value
# The background thread should skip fetching from the nodes that have buffered
partitions
Option 3 won out. The change in {{AsyncKafkaConsumer}} is to include in the
fetch request any partition with buffered data. By using a "max bytes" size of
1, this should cause the fetch response to return as little data as possible.
In that way, the consumer doesn't buffer too much data on the client before it
can be returned from {{{}poll(){}}}.
h1. Testing
h2. Eviction rate testing
Here are the results of our internal stress testing:
* {{{}ClassicKafkaConsumer{}}}—after the initial spike during test start up,
the average rate settles down to ~0.14 evictions/second
[!https://private-user-images.githubusercontent.com/92057/389141955-b13c46a2-226f-44c9-a8c5-d6dc0d38d40e.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzY3OTU0OTksIm5iZiI6MTczNjc5NTE5OSwicGF0aCI6Ii85MjA1Ny8zODkxNDE5NTUtYjEzYzQ2YTItMjI2Zi00NGM5LWE4YzUtZDZkYzBkMzhkNDBlLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAxMTMlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMTEzVDE5MDYzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWVlMzc3MGI0YzQ3YjMzNDAyMzk4ZTVjNDc0MzMzNWQ3OWI5MzZhN2M4ZmJhMTNkMzU2ODhiMzg4YmM2NDI5NGImWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.EyVhI7-v_crz8R465PVuKqZoqzDoImal8SBlCOFitCY|width=1111,height=400!|https://private-user-images.githubusercontent.com/92057/389141955-b13c46a2-226f-44c9-a8c5-d6dc0d38d40e.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzY3OTU0OTksIm5iZiI6MTczNjc5NTE5OSwicGF0aCI6Ii85MjA1Ny8zODkxNDE5NTUtYjEzYzQ2YTItMjI2Zi00NGM5LWE4YzUtZDZkYzBkMzhkNDBlLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAxMTMlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMTEzVDE5MDYzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWVlMzc3MGI0YzQ3YjMzNDAyMzk4ZTVjNDc0MzMzNWQ3OWI5MzZhN2M4ZmJhMTNkMzU2ODhiMzg4YmM2NDI5NGImWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.EyVhI7-v_crz8R465PVuKqZoqzDoImal8SBlCOFitCY]
* {{{}AsyncKafkaConsumer{}}}, (w/o fix)—after startup, the evictions still
settle down, but they are about 100x higher than the {{ClassicKafkaConsumer}}
at ~1.48 evictions/second
[!https://private-user-images.githubusercontent.com/92057/389141959-dca5ff7f-74bd-4174-b6e6-39c4e8479684.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzY3OTU0OTksIm5iZiI6MTczNjc5NTE5OSwicGF0aCI6Ii85MjA1Ny8zODkxNDE5NTktZGNhNWZmN2YtNzRiZC00MTc0LWI2ZTYtMzljNGU4NDc5Njg0LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAxMTMlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMTEzVDE5MDYzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWQwOTVkMTk3ZTYyMTFlYjlkMmNkN2MwYzJhNjVhZWM1MGNmMWZjYzQ0YzRmZGRkNTFjZWQ3MTc4ZWY0OTk1ZTMmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.66SRL4hvz-2omy0NGwbb5apktUAkoJ5Oh7IrgFtG-N4|width=1106,height=400!|https://private-user-images.githubusercontent.com/92057/389141959-dca5ff7f-74bd-4174-b6e6-39c4e8479684.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzY3OTU0OTksIm5iZiI6MTczNjc5NTE5OSwicGF0aCI6Ii85MjA1Ny8zODkxNDE5NTktZGNhNWZmN2YtNzRiZC00MTc0LWI2ZTYtMzljNGU4NDc5Njg0LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAxMTMlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMTEzVDE5MDYzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWQwOTVkMTk3ZTYyMTFlYjlkMmNkN2MwYzJhNjVhZWM1MGNmMWZjYzQ0YzRmZGRkNTFjZWQ3MTc4ZWY0OTk1ZTMmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.66SRL4hvz-2omy0NGwbb5apktUAkoJ5Oh7IrgFtG-N4]
* {{AsyncKafkaConsumer}} (w/ fix)—the eviction rate is now closer to the
{{ClassicKafkaConsumer}} at ~0.22 evictions/second
[!https://private-user-images.githubusercontent.com/92057/389141958-19009791-d63e-411d-96ed-b49605f93325.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzY3OTU0OTksIm5iZiI6MTczNjc5NTE5OSwicGF0aCI6Ii85MjA1Ny8zODkxNDE5NTgtMTkwMDk3OTEtZDYzZS00MTFkLTk2ZWQtYjQ5NjA1ZjkzMzI1LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAxMTMlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMTEzVDE5MDYzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTM4ODU1ODNkYmEzYTliMjRkZGY3MDMyMGExYmZmY2VjNzM0OTJkMDNmZDMyZmY0M2QwMmRhOWRmNDRiODY2NWImWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.8D90EW8XJBDJUANqhlHtxmJgKToKJWKqcfP3EiJmbPc|width=1110,height=400!|https://private-user-images.githubusercontent.com/92057/389141958-19009791-d63e-411d-96ed-b49605f93325.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzY3OTU0OTksIm5iZiI6MTczNjc5NTE5OSwicGF0aCI6Ii85MjA1Ny8zODkxNDE5NTgtMTkwMDk3OTEtZDYzZS00MTFkLTk2ZWQtYjQ5NjA1ZjkzMzI1LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAxMTMlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMTEzVDE5MDYzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTM4ODU1ODNkYmEzYTliMjRkZGY3MDMyMGExYmZmY2VjNzM0OTJkMDNmZDMyZmY0M2QwMmRhOWRmNDRiODY2NWImWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.8D90EW8XJBDJUANqhlHtxmJgKToKJWKqcfP3EiJmbPc]
h2. {{EndToEndLatency}} testing
The bundled {{EndToEndLatency}} test runner was executed on a single machine
using Docker. The {{apache/kafka:latest}} Docker image was used and either the
{{cluster/combined/plaintext/docker-compose.yml}} or
{{single-node/plaintext/docker-compose.yml}} Docker Compose configuration
files, depending on the test. The Docker containers were recreated from scratch
before each test.
A single topic was created with 30 partitions and with a replication factor of
either 1 or 3, depending on a single- or multi-node setup.
For each of the test runs these argument values were used:
* Message count: 100000
* {{{}acks{}}}: 1
* Message size: 128 bytes
A configuration file which contained a single configuration value of
{{group.protocol=<$group_protocol>}} was also provided to the test, where
{{$group_protocol}} was either {{CLASSIC}} or {{{}CONSUMER{}}}.
h3. Test results
h4. Test 1—{{{}CLASSIC{}}} group protocol, cluster size: 3 nodes, replication
factor: 3
||Metric||{{trunk}}||PR||
|Average latency|1.4901|1.4871|
|50th percentile|1|1|
|99th percentile|3|3|
|99.9th percentile|6|6|
h4. Test 2—{{{}CONSUMER{}}} group protocol, cluster size: 3 nodes, replication
factor: 3
||Metric||{{trunk}}||PR||
|Average latency|1.4704|1.4807|
|50th percentile|1|1|
|99th percentile|3|3|
|99.9th percentile|6|7|
h4. Test 3—{{{}CLASSIC{}}} group protocol, cluster size: 1 node, replication
factor: 1
||Metric||{{trunk}}||PR||
|Average latency|1.0777|1.0193|
|50th percentile|1|1|
|99th percentile|2|2|
|99.9th percentile|5|4|
h4. Test 4—{{{}CONSUMER{}}} group protocol, cluster size: 1 node, replication
factor: 1
||Metric||{{trunk}}||PR||
|Average latency|1.0937|1.0503|
|50th percentile|1|1|
|99th percentile|2|2|
|99.9th percentile|4|4|
h3. Conclusion
These tests did not reveal any significant differences between the current
fetcher logic on {{trunk}} and the one proposed in this PR. Addition test runs
using larger message counts and/or larger message sizes did not affect the
result.
was:
In stress testing the new consumer, the new consumer is evicting fetch sessions
on the broker much more frequently than expected. There is an ongoing
investigation into this behavior, but it appears to stem from a race condition
due to the design of the new consumer.
In the background thread, fetch requests are sent in a near continuous fashion
for partitions that are "fetchable." A timing bug appears to cause partitions
to be "unfetchable," which then causes them to end up in the "removed" set of
partitions. The broker then removes them from the fetch session, which causes
the number of remaining partitions for that session to drop below a threshold
that allows it to be evicted by another competing session. Within a few
milliseconds, though, the partitions become "fetchable" again, and are added to
the "added" set of partitions on the next fetch request. This causes thrashing
on both the client and broker sides as both are handling a steady stream of
evictions, which negatively affects consumption throughput.
> Consumer fetch sessions are evicted too quickly with AsyncKafkaConsumer
> -----------------------------------------------------------------------
>
> Key: KAFKA-17182
> URL: https://issues.apache.org/jira/browse/KAFKA-17182
> Project: Kafka
> Issue Type: Bug
> Components: clients, consumer
> Affects Versions: 3.8.0
> Reporter: Kirk True
> Assignee: Kirk True
> Priority: Blocker
> Labels: consumer-threading-refactor
> Fix For: 4.0.0
>
>
> h1. Background
> {{Consumer}} implementations fetch data from the cluster and temporarily
> buffer it in memory until the user next calls {{{}Consumer.poll(){}}}. When a
> fetch request is being generated, partitions that already have buffered data
> are not included in the fetch request.
> The {{ClassicKafkaConsumer}} performs much of its fetch logic and network I/O
> in the application thread. On {{{}poll(){}}}, if there is any
> locally-buffered data, the {{ClassicKafkaConsumer}} does not fetch _any_ new
> data and simply returns the buffered data to the user from {{{}poll(){}}}.
> On the other hand, the {{AsyncKafkaConsumer}} consumer splits its logic and
> network I/O between two threads, which results in a potential race condition
> during fetch. The {{AsyncKafkaConsumer}} also checks for buffered data on its
> application thread. If it finds there is none, it signals the background
> thread to create a fetch request. However, it's possible for the background
> thread to receive data from a previous fetch and buffer it before the fetch
> request logic starts. When that occurs, as the background thread creates a
> new fetch request, it skips any buffered data, which has the unintended
> result that those partitions get added to the fetch request's "to remove"
> set. This signals to the broker to remove those partitions from its internal
> cache.
> This issue is technically possible in the {{ClassicKafkaConsumer}} too, since
> the heartbeat thread performs network I/O in addition to the application
> thread. However, because of the frequency at which the
> {{{}AsyncKafkaConsumer{}}}'s background thread runs, it is ~100x more likely
> to happen.
> h1. Options
> The core decision is: what should the background thread do if it is asked to
> create a fetch request and it discovers there's buffered data. There were
> multiple proposals to address this issue in the {{{}AsyncKafkaConsumer{}}}.
> Among them are:
> # The background thread should omit buffered partitions from the fetch
> request as before (this is the existing behavior)
> # The background thread should skip the fetch request generation entirely if
> there are _any_ buffered partitions
> # The background thread should include buffered partitions in the fetch
> request, but use a small “max bytes” value
> # The background thread should skip fetching from the nodes that have
> buffered partitions
> Option 3 won out. The change in {{AsyncKafkaConsumer}} is to include in the
> fetch request any partition with buffered data. By using a "max bytes" size
> of 1, this should cause the fetch response to return as little data as
> possible. In that way, the consumer doesn't buffer too much data on the
> client before it can be returned from {{{}poll(){}}}.
> h1. Testing
> h2. Eviction rate testing
> Here are the results of our internal stress testing:
> * {{{}ClassicKafkaConsumer{}}}—after the initial spike during test start up,
> the average rate settles down to ~0.14 evictions/second
> [!https://private-user-images.githubusercontent.com/92057/389141955-b13c46a2-226f-44c9-a8c5-d6dc0d38d40e.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzY3OTU0OTksIm5iZiI6MTczNjc5NTE5OSwicGF0aCI6Ii85MjA1Ny8zODkxNDE5NTUtYjEzYzQ2YTItMjI2Zi00NGM5LWE4YzUtZDZkYzBkMzhkNDBlLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAxMTMlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMTEzVDE5MDYzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWVlMzc3MGI0YzQ3YjMzNDAyMzk4ZTVjNDc0MzMzNWQ3OWI5MzZhN2M4ZmJhMTNkMzU2ODhiMzg4YmM2NDI5NGImWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.EyVhI7-v_crz8R465PVuKqZoqzDoImal8SBlCOFitCY|width=1111,height=400!|https://private-user-images.githubusercontent.com/92057/389141955-b13c46a2-226f-44c9-a8c5-d6dc0d38d40e.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzY3OTU0OTksIm5iZiI6MTczNjc5NTE5OSwicGF0aCI6Ii85MjA1Ny8zODkxNDE5NTUtYjEzYzQ2YTItMjI2Zi00NGM5LWE4YzUtZDZkYzBkMzhkNDBlLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAxMTMlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMTEzVDE5MDYzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWVlMzc3MGI0YzQ3YjMzNDAyMzk4ZTVjNDc0MzMzNWQ3OWI5MzZhN2M4ZmJhMTNkMzU2ODhiMzg4YmM2NDI5NGImWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.EyVhI7-v_crz8R465PVuKqZoqzDoImal8SBlCOFitCY]
> * {{{}AsyncKafkaConsumer{}}}, (w/o fix)—after startup, the evictions still
> settle down, but they are about 100x higher than the {{ClassicKafkaConsumer}}
> at ~1.48 evictions/second
> [!https://private-user-images.githubusercontent.com/92057/389141959-dca5ff7f-74bd-4174-b6e6-39c4e8479684.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzY3OTU0OTksIm5iZiI6MTczNjc5NTE5OSwicGF0aCI6Ii85MjA1Ny8zODkxNDE5NTktZGNhNWZmN2YtNzRiZC00MTc0LWI2ZTYtMzljNGU4NDc5Njg0LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAxMTMlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMTEzVDE5MDYzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWQwOTVkMTk3ZTYyMTFlYjlkMmNkN2MwYzJhNjVhZWM1MGNmMWZjYzQ0YzRmZGRkNTFjZWQ3MTc4ZWY0OTk1ZTMmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.66SRL4hvz-2omy0NGwbb5apktUAkoJ5Oh7IrgFtG-N4|width=1106,height=400!|https://private-user-images.githubusercontent.com/92057/389141959-dca5ff7f-74bd-4174-b6e6-39c4e8479684.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzY3OTU0OTksIm5iZiI6MTczNjc5NTE5OSwicGF0aCI6Ii85MjA1Ny8zODkxNDE5NTktZGNhNWZmN2YtNzRiZC00MTc0LWI2ZTYtMzljNGU4NDc5Njg0LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAxMTMlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMTEzVDE5MDYzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWQwOTVkMTk3ZTYyMTFlYjlkMmNkN2MwYzJhNjVhZWM1MGNmMWZjYzQ0YzRmZGRkNTFjZWQ3MTc4ZWY0OTk1ZTMmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.66SRL4hvz-2omy0NGwbb5apktUAkoJ5Oh7IrgFtG-N4]
> * {{AsyncKafkaConsumer}} (w/ fix)—the eviction rate is now closer to the
> {{ClassicKafkaConsumer}} at ~0.22 evictions/second
> [!https://private-user-images.githubusercontent.com/92057/389141958-19009791-d63e-411d-96ed-b49605f93325.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzY3OTU0OTksIm5iZiI6MTczNjc5NTE5OSwicGF0aCI6Ii85MjA1Ny8zODkxNDE5NTgtMTkwMDk3OTEtZDYzZS00MTFkLTk2ZWQtYjQ5NjA1ZjkzMzI1LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAxMTMlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMTEzVDE5MDYzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTM4ODU1ODNkYmEzYTliMjRkZGY3MDMyMGExYmZmY2VjNzM0OTJkMDNmZDMyZmY0M2QwMmRhOWRmNDRiODY2NWImWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.8D90EW8XJBDJUANqhlHtxmJgKToKJWKqcfP3EiJmbPc|width=1110,height=400!|https://private-user-images.githubusercontent.com/92057/389141958-19009791-d63e-411d-96ed-b49605f93325.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzY3OTU0OTksIm5iZiI6MTczNjc5NTE5OSwicGF0aCI6Ii85MjA1Ny8zODkxNDE5NTgtMTkwMDk3OTEtZDYzZS00MTFkLTk2ZWQtYjQ5NjA1ZjkzMzI1LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAxMTMlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMTEzVDE5MDYzOVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTM4ODU1ODNkYmEzYTliMjRkZGY3MDMyMGExYmZmY2VjNzM0OTJkMDNmZDMyZmY0M2QwMmRhOWRmNDRiODY2NWImWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.8D90EW8XJBDJUANqhlHtxmJgKToKJWKqcfP3EiJmbPc]
> h2. {{EndToEndLatency}} testing
> The bundled {{EndToEndLatency}} test runner was executed on a single machine
> using Docker. The {{apache/kafka:latest}} Docker image was used and either
> the {{cluster/combined/plaintext/docker-compose.yml}} or
> {{single-node/plaintext/docker-compose.yml}} Docker Compose configuration
> files, depending on the test. The Docker containers were recreated from
> scratch before each test.
> A single topic was created with 30 partitions and with a replication factor
> of either 1 or 3, depending on a single- or multi-node setup.
> For each of the test runs these argument values were used:
> * Message count: 100000
> * {{{}acks{}}}: 1
> * Message size: 128 bytes
> A configuration file which contained a single configuration value of
> {{group.protocol=<$group_protocol>}} was also provided to the test, where
> {{$group_protocol}} was either {{CLASSIC}} or {{{}CONSUMER{}}}.
> h3. Test results
> h4. Test 1—{{{}CLASSIC{}}} group protocol, cluster size: 3 nodes, replication
> factor: 3
> ||Metric||{{trunk}}||PR||
> |Average latency|1.4901|1.4871|
> |50th percentile|1|1|
> |99th percentile|3|3|
> |99.9th percentile|6|6|
> h4. Test 2—{{{}CONSUMER{}}} group protocol, cluster size: 3 nodes,
> replication factor: 3
> ||Metric||{{trunk}}||PR||
> |Average latency|1.4704|1.4807|
> |50th percentile|1|1|
> |99th percentile|3|3|
> |99.9th percentile|6|7|
> h4. Test 3—{{{}CLASSIC{}}} group protocol, cluster size: 1 node, replication
> factor: 1
> ||Metric||{{trunk}}||PR||
> |Average latency|1.0777|1.0193|
> |50th percentile|1|1|
> |99th percentile|2|2|
> |99.9th percentile|5|4|
> h4. Test 4—{{{}CONSUMER{}}} group protocol, cluster size: 1 node, replication
> factor: 1
> ||Metric||{{trunk}}||PR||
> |Average latency|1.0937|1.0503|
> |50th percentile|1|1|
> |99th percentile|2|2|
> |99.9th percentile|4|4|
> h3. Conclusion
> These tests did not reveal any significant differences between the current
> fetcher logic on {{trunk}} and the one proposed in this PR. Addition test
> runs using larger message counts and/or larger message sizes did not affect
> the result.
--
This message was sent by Atlassian Jira
(v8.20.10#820010)