[ https://issues.apache.org/jira/browse/KAFKA-19238?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
karthickthavasiraj09 closed KAFKA-19238. ---------------------------------------- > We're facing issue in Kafka while reading data from Azure event hubs through > Azure Databricks > --------------------------------------------------------------------------------------------- > > Key: KAFKA-19238 > URL: https://issues.apache.org/jira/browse/KAFKA-19238 > Project: Kafka > Issue Type: Test > Components: connect, consumer, network > Affects Versions: 3.3.1 > Environment: Production > Reporter: karthickthavasiraj09 > Priority: Blocker > Labels: BLOCKER, important > > We had an issue while reading data from the Azure Event hubs through Azure > Databricks. After working with Microsoft team they confirmed that there's an > issue from Kafka side. I'm sharing the debug logs shared by the Microsoft > team below, > The good job shared on March 20th, so we would not be able to download the > backend logs _(as it's > 20 days)_ > But for the bad job: > [https://adb-2632737963103362.2.azuredatabricks.net/jobs/911028616577296/runs/939144212532710?o=2632737963103362] > that took 49m, we see that task 143 takes 46 mins _(out of the job duration > of_ > _49m 30s)_ > _25/04/15 14:21:44 INFO KafkaBatchReaderFactoryWithRowBytesAccumulator: > Creating Kafka reader > topicPartition=voyager-prod-managedsql-cus.order.orders.orderitem-0 > fromOffset=16511904 untilOffset=16658164, for query > queryId=dd660d4d-05cc-4a8e-8f93-d202ec78fec3 > runId=af7eb711-7310-4788-85b7-0977fc0756b7 batchId=73 taskId=143 > partitionId=0_ > _._ > _25/04/15 15:07:21 INFO KafkaDataConsumer: From Kafka > topicPartition=voyager-prod-managedsql-cus.order.orders.orderitem-0 > groupId=spark-kafka-source-da79e0fc-8ee5-40f5-a127-7b31766b3022--1737876659-executor > read 146260 records through 4314 polls (polled out 146265 records), taking > 2526471821132 nanos, during time span of 2736294068630 nanos._ > And this task is waiting for Kafka to respond for most of the time as we can > see from the threads: > _Executor task launch worker for task 0.0 in stage 147.0 (TID 143)_ > _sun.nio.ch.EPollArrayWrapper.epollWait(Native Method)_ > _sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:269)_ > _sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:93)_ > _sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:86) - locked > sun.nio.ch.EPollSelectorImpl@54f8f9b6_ > _sun.nio.ch.SelectorImpl.select(SelectorImpl.java:97)_ > _kafkashaded.org.apache.kafka.common.network.Selector.select(Selector.java:874)_ > _kafkashaded.org.apache.kafka.common.network.Selector.poll(Selector.java:465)_ > _kafkashaded.org.apache.kafka.clients.NetworkClient.poll(NetworkClient.java:560)_ > _kafkashaded.org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.poll(ConsumerNetworkClient.java:280)_ > _kafkashaded.org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.poll(ConsumerNetworkClient.java:251)_ > _kafkashaded.org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.poll(ConsumerNetworkClient.java:242)_ > _kafkashaded.org.apache.kafka.clients.consumer.KafkaConsumer.position(KafkaConsumer.java:1759)_ > _kafkashaded.org.apache.kafka.clients.consumer.KafkaConsumer.position(KafkaConsumer.java:1717)_ > _org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumer.getAvailableOffsetRange(KafkaDataConsumer.scala:110)_ > _org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumer.fetch(KafkaDataConsumer.scala:84)_ > _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.$anonfun$fetchData$1(KafkaDataConsumer.scala:593)_ > _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer$$Lambda$4556/228899458.apply(Unknown > Source)_ > _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.timeNanos(KafkaDataConsumer.scala:696)_ > _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.fetchData(KafkaDataConsumer.scala:593)_ > _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.fetchRecord(KafkaDataConsumer.scala:517)_ > _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.$anonfun$get$1(KafkaDataConsumer.scala:325)_ > _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer$$Lambda$4491/342980175.apply(Unknown > Source)_ > _org.apache.spark.util.UninterruptibleThread.runUninterruptibly(UninterruptibleThread.scala:77)_ > _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.runUninterruptiblyIfPossible(KafkaDataConsumer.scala:686)_ > _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.get(KafkaDataConsumer.scala:301)_ > _org.apache.spark.sql.kafka010.KafkaBatchPartitionReader.next(KafkaBatchPartitionReader.scala:106)_ > _._ -- This message was sent by Atlassian Jira (v8.20.10#820010)