On 09/18/09 10:40, Wei Feng wrote:
> BTW, when I said I did not intentionally specify -shared option, I mean I did
> not type in the g++ command. It was generated by the mex command that I used:
> ===================
> mex -g -v -largeArrayDims -I/usr/include -L/usr/lib -lJudy
> mex_test_cir_map_target.cpp ...
> ===================
With out a copy of your code it is hard to guess. I have attached a
copy of the Judy1LCheck.c file from the Judy source. Can you compile
this as a simple test using:
gcc -o Judy1LCheck Judy1LCheck.c -lJudy -lm
You should then be able to run the resulting binary "Judy1LCheck".
Please let us know the results from this simple test.
Thanks,
Troy
// @(#) $Revision: 4.15 $ $Source: /judy/test/manual/Judy1LCheck.c $
// This program tests the accuracy of a Judy1 with a JudyL Array.
// -by-
// Douglas L. Baskins (8/2001) [email protected]
#ifndef JU_WIN_IA32
#include <unistd.h> // unavailable on Win32, and no getopt().
#endif
#include <stdlib.h> // calloc()
#include <math.h> // pow()
#include <stdio.h> // printf()
#include <Judy.h>
// Common macro to handle a failure
#define FAILURE(STR, UL) \
{ \
printf( "Error: %s %lu, file='%s', 'function='%s', line %d\n", \
STR, UL, __FILE__, __FUNCTI0N__, __LINE__); \
fprintf(stderr, "Error: %s %lu, file='%s', 'function='%s', line %d\n", \
STR, UL, __FILE__, __FUNCTI0N__, __LINE__); \
exit(1); \
}
// Structure to keep track of times
typedef struct MEASUREMENTS_STRUCT
{
Word_t ms_delta;
}
ms_t, *Pms_t;
// Specify prototypes for each test routine
int
NextNumb(Word_t * PNumber, double *PDNumb, double DMult, Word_t MaxNumb);
Word_t TestJudyIns(void **J1, void **JL, Word_t Seed, Word_t Elements);
Word_t TestJudyDup(void **J1, void **JL, Word_t Seed, Word_t Elements);
int TestJudyDel(void **J1, void **JL, Word_t Seed, Word_t Elements);
Word_t TestJudyGet(void *J1, void *JL, Word_t Seed, Word_t Elements);
int TestJudyCount(void *J1, void *JL, Word_t LowIndex, Word_t Elements);
Word_t TestJudyNext(void *J1, void *JL, Word_t LowIndex, Word_t Elements);
int TestJudyPrev(void *J1, void *JL, Word_t HighIndex, Word_t Elements);
int
TestJudyNextEmpty(void *J1, void *JL, Word_t LowIndex, Word_t Elements);
int
TestJudyPrevEmpty(void *J1, void *JL, Word_t HighIndex, Word_t Elements);
Word_t MagicList[] =
{
0,0,0,0,0,0,0,0,0,0, // 0..9
0x27f, // 10
0x27f, // 11
0x27f, // 12
0x27f, // 13
0x27f, // 14
0x27f, // 15
0x1e71, // 16
0xdc0b, // 17
0xdc0b, // 18
0xdc0b, // 19
0xdc0b, // 20
0xc4fb, // 21
0xc4fb, // 22
0xc4fb, // 23
0x13aab, // 24
0x11ca3, // 25
0x11ca3, // 26
0x11ca3, // 27
0x13aab, // 28
0x11ca3, // 29
0xc4fb, // 30
0xc4fb, // 31
0x13aab, // 32
0x14e73, // 33
0x145d7, // 34
0x145f9, // 35 following tested with Seed=0xc1fc to 35Gig numbers
0x151ed, // 36 .. 41
0x151ed, // 37
0x151ed, // 38
0x151ed, // 39
0x151ed, // 40
0x146c3, // 41 .. 64
0x146c3, // 42
0x146c3, // 43
0x146c3, // 44
0x146c3, // 45
0x146c3, // 46
0x146c3, // 47
0x146c3, // 48
0x146c3, // 49
0x146c3, // 50
0x146c3, // 51
0x146c3, // 52
0x146c3, // 53
0x146c3, // 54
0x146c3, // 55
0x146c3, // 56
0x146c3, // 57
0x146c3, // 58
0x146c3, // 59
0x146c3, // 60
0x146c3, // 61
0x146c3, // 62
0x146c3, // 63
0x146c3 // 64
};
// Routine to "mirror" the input data word
static Word_t
Swizzle(Word_t word)
{
// BIT REVERSAL, Ron Gutman in Dr. Dobb's Journal, #316, Sept 2000, pp133-136
//
#ifdef __LP64__
word = ((word & 0x00000000ffffffff) << 32) |
((word & 0xffffffff00000000) >> 32);
word = ((word & 0x0000ffff0000ffff) << 16) |
((word & 0xffff0000ffff0000) >> 16);
word = ((word & 0x00ff00ff00ff00ff) << 8) |
((word & 0xff00ff00ff00ff00) >> 8);
word = ((word & 0x0f0f0f0f0f0f0f0f) << 4) |
((word & 0xf0f0f0f0f0f0f0f0) >> 4);
word = ((word & 0x3333333333333333) << 2) |
((word & 0xcccccccccccccccc) >> 2);
word = ((word & 0x5555555555555555) << 1) |
((word & 0xaaaaaaaaaaaaaaaa) >> 1);
#else // __LP64__
word = ((word & 0x0000ffff) << 16) | ((word & 0xffff0000) >> 16);
word = ((word & 0x00ff00ff) << 8) | ((word & 0xff00ff00) >> 8);
word = ((word & 0x0f0f0f0f) << 4) | ((word & 0xf0f0f0f0) >> 4);
word = ((word & 0x33333333) << 2) | ((word & 0xcccccccc) >> 2);
word = ((word & 0x55555555) << 1) | ((word & 0xaaaaaaaa) >> 1);
#endif // __LP64__
return(word);
}
Word_t dFlag = 1;
Word_t pFlag = 0;
Word_t CFlag = 0;
Word_t DFlag = 0;
Word_t SkipN = 0; // default == Random skip
Word_t nElms = 1000000; // Default = 1M
Word_t ErrorFlag = 0;
Word_t TotalIns = 0;
Word_t TotalPop = 0;
Word_t TotalDel = 0;
// Stuff for LFSR (pseudo random number generator)
Word_t RandomBit = ~0UL / 2 + 1;
Word_t BValue = sizeof(Word_t) * 8;
Word_t Magic;
Word_t StartSeed = 0xc1fc; // default beginning number
Word_t FirstSeed;
#undef __FUNCTI0N__
#define __FUNCTI0N__ "Random"
static Word_t // Placed here so INLINING compilers get to look at it.
Random(Word_t newseed)
{
if (newseed & RandomBit)
{
newseed += newseed;
newseed ^= Magic;
}
else
{
newseed += newseed;
}
newseed &= RandomBit * 2 - 1;
if (newseed == FirstSeed)
{
printf("End of LFSR, Total Population = %lu\n", TotalPop);
exit(0);
}
return(newseed);
}
static Word_t // Placed here so INLINING compilers get to look at it.
GetNextIndex(Word_t Index)
{
if (SkipN)
Index += SkipN;
else
Index = Random(Index);
return(Index);
}
#undef __FUNCTI0N__
#define __FUNCTI0N__ "main"
int
main(int argc, char *argv[])
{
// Names of Judy Arrays
void *J1 = NULL; // Judy1
void *JL = NULL; // JudyL
double Mult;
Pms_t Pms;
Word_t Seed;
Word_t PtsPdec = 10; // points per decade
Word_t Groups; // Number of measurement groups
Word_t grp;
int c;
extern char *optarg;
//////////////////////////////////////////////////////////////
// PARSE INPUT PARAMETERS
//////////////////////////////////////////////////////////////
while ((c = getopt(argc, argv, "n:S:P:b:L:B:pdDC")) != -1)
{
switch (c)
{
case 'n': // Number of elements
nElms = strtoul(optarg, NULL, 0); // Size of Linear Array
if (nElms == 0)
FAILURE("No tests: -n", nElms);
// Check if more than a trillion (64 bit only)
if ((double)nElms > 1e12)
FAILURE("Too many Indexes=", nElms);
break;
case 'S': // Step Size, 0 == Random
SkipN = strtoul(optarg, NULL, 0);
break;
case 'P': //
PtsPdec = strtoul(optarg, NULL, 0);
break;
case 'b': // May not work past 35 bits if changed
StartSeed = strtoul(optarg, NULL, 0);
break;
case 'B':
BValue = strtoul(optarg, NULL, 0);
if (
(BValue > (sizeof(Word_t) * 8))
||
(MagicList[BValue] == 0)
)
{
ErrorFlag++;
printf("\nIllegal number of random bits of %lu !!!\n", BValue);
}
break;
case 'p': // Print test indexes
pFlag = 1;
break;
case 'd': // Delete indexes
dFlag = 0;
break;
case 'D': // Swizzle indexes
DFlag = 1;
break;
case 'C': // Skip counting test.
CFlag = 1;
break;
default:
ErrorFlag++;
break;
}
}
if (ErrorFlag)
{
printf("\n%s -n# -S# -B# -P# -b # -DRCpd\n\n", argv[0]);
printf("Where:\n");
printf("-n <#> number of indexes used in tests\n");
printf("-C skip JudyCount tests\n");
printf("-p print index set - for debug\n");
printf("-d do not call JudyDel/Unset\n");
printf("-D Swizzle data (mirror)\n");
printf("-S <#> index skip amount, 0 = random\n");
printf("-B <#> # bits-1 in random number generator\n");
printf("-P <#> number measurement points per decade\n");
printf("\n");
exit(1);
}
// Set number of Random bits in LFSR
RandomBit = 1UL << (BValue - 1);
Magic = MagicList[BValue];
if (nElms > ((RandomBit-2) * 2))
{
printf("# Number = -n%lu of Indexes reduced to max expanse of Random numbers\n", nElms);
nElms = ((RandomBit-2) * 2);
}
printf("\n%s -n%lu -S%lu -B%lu", argv[0], nElms, SkipN, BValue);
if (DFlag)
printf(" -D");
if (!dFlag)
printf(" -d");
if (pFlag)
printf(" -p");
if (CFlag)
printf(" -C");
printf("\n\n");
if (sizeof(Word_t) == 8)
printf("%s 64 Bit version\n", argv[0]);
else if (sizeof(Word_t) == 4)
printf("%s 32 Bit version\n", argv[0]);
//////////////////////////////////////////////////////////////
// CALCULATE NUMBER OF MEASUREMENT GROUPS
//////////////////////////////////////////////////////////////
// Calculate Multiplier for number of points per decade
Mult = pow(10.0, 1.0 / (double)PtsPdec);
{
double sum;
Word_t numb, prevnumb;
// Count number of measurements needed (10K max)
sum = numb = 1;
for (Groups = 2; Groups < 10000; Groups++)
if (NextNumb(&numb, &sum, Mult, nElms))
break;
// Get memory for measurements
Pms = (Pms_t) calloc(Groups, sizeof(ms_t));
// Now calculate number of Indexes for each measurement point
numb = sum = 1;
prevnumb = 0;
for (grp = 0; grp < Groups; grp++)
{
Pms[grp].ms_delta = numb - prevnumb;
prevnumb = numb;
NextNumb(&numb, &sum, Mult, nElms);
}
} // Groups = number of sizes
//////////////////////////////////////////////////////////////
// BEGIN TESTS AT EACH GROUP SIZE
//////////////////////////////////////////////////////////////
// Get the kicker to test the LFSR
FirstSeed = Seed = StartSeed & (RandomBit * 2 - 1);
printf("Total Pop Total Ins New Ins Total Del");
printf(" J1MU/I JLMU/I\n");
#ifdef testLFSR
{
Word_t Seed1 = Seed;
while(1)
{
Seed1 = GetNextIndex(Seed1);
TotalPop++;
if (TotalPop > 40000000000) printf("Total = %lu\n", TotalPop), exit(1);
}
}
#endif // testLFSR
for (grp = 0; grp < Groups; grp++)
{
Word_t LowIndex, HighIndex;
Word_t Delta;
Word_t NewSeed;
Delta = Pms[grp].ms_delta;
// Test JLI, J1S
NewSeed = TestJudyIns(&J1, &JL, Seed, Delta);
// Test JLG, J1T
LowIndex = TestJudyGet(J1, JL, Seed, Delta);
// Test JLI, J1S -dup
LowIndex = TestJudyDup(&J1, &JL, Seed, Delta);
// Test JLC, J1C
if (!CFlag)
{
TestJudyCount(J1, JL, LowIndex, Delta);
}
// Test JLN, J1N
HighIndex = TestJudyNext(J1, JL, LowIndex, Delta);
// Test JLP, J1P
TestJudyPrev(J1, JL, HighIndex, Delta);
// Test JLNE, J1NE
TestJudyNextEmpty(J1, JL, LowIndex, Delta);
// Test JLPE, J1PE
TestJudyPrevEmpty(J1, JL, HighIndex, Delta);
// Test JLD, J1U
if (dFlag)
{
TestJudyDel(&J1, &JL, Seed, Delta);
}
printf("%9lu %9lu %7lu %9lu", TotalPop, TotalIns, Delta, TotalDel);
{
Word_t Count1, CountL;
// Print the number of bytes used per Index
J1C(Count1, J1, 0, ~0);
printf(" %6.3f", (double)Judy1MemUsed(J1) / (double)Count1);
JLC(CountL, JL, 0, ~0);
printf(" %6.3f", (double)JudyLMemUsed(JL) / (double)CountL);
}
printf("\n");
// Advance Index number set
Seed = NewSeed;
}
{
Word_t Count1, CountL;
Word_t Bytes;
JLC(CountL, JL, 0, ~0);
J1C(Count1, J1, 0, ~0);
if (CountL != TotalPop)
FAILURE("JudyLCount wrong", CountL);
if (Count1 != TotalPop)
FAILURE("Judy1Count wrong", Count1);
if (TotalPop)
{
J1FA(Bytes, J1); // Free the Judy1 Array
printf("Judy1FreeArray = %6.3f Bytes/Index\n",
(double)Bytes / (double)Count1);
if (pFlag) { printf("J1FA: %8lu\tbytes = %lu\n", TotalPop, Bytes); }
JLFA(Bytes, JL); // Free the JudyL Array
printf("JudyLFreeArray = %6.3f Bytes/Index\n",
(double)Bytes / (double)CountL);
if (pFlag) { printf("JLFA: %8lu\tbytes = %lu\n", TotalPop, Bytes); }
TotalPop = 0;
}
}
printf("Passed JudyL and Judy1 tests\n");
exit(0);
}
#undef __FUNCTI0N__
#define __FUNCTI0N__ "TestJudyIns"
Word_t
TestJudyIns(void **J1, void **JL, Word_t Seed, Word_t Elements)
{
Word_t TstIndex;
Word_t elm;
Word_t *PValue, *PValue1;
Word_t Seed1;
int Rcode;
for (Seed1 = Seed, elm = 0; elm < Elements; elm++)
{
Seed1 = GetNextIndex(Seed1);
if (Seed1 == 0)
FAILURE("This command not robust if Index == 0", elm);
if (DFlag)
TstIndex = Swizzle(Seed1);
else
TstIndex = Seed1;
if (pFlag) { printf("Ins: %8lu\t0x%lx\n", elm, TstIndex); }
J1S(Rcode, *J1, TstIndex);
if (Rcode == JERR)
FAILURE("Judy1Set failed at", elm);
if (Rcode == 0)
FAILURE("Judy1Set failed - DUP Index, population =", TotalPop);
J1T(Rcode, *J1, TstIndex);
if (Rcode != 1)
FAILURE("Judy1Test failed - Index missing, population =", TotalPop);
J1S(Rcode, *J1, TstIndex);
if (Rcode != 0)
FAILURE("Judy1Set failed - Index missing, population =", TotalPop);
JLI(PValue, *JL, TstIndex);
if (PValue == PJERR)
FAILURE("JudyLIns failed at", elm);
if (*PValue == TstIndex)
FAILURE("JudyLIns failed - DUP Index, population =", TotalPop);
// Save Index in Value
*PValue = TstIndex;
JLG(PValue1, *JL, TstIndex);
if (PValue != PValue1)
FAILURE("JudyLGet failed - Index missing, population =", TotalPop);
JLI(PValue1, *JL, TstIndex);
if (PValue != PValue1)
{
if (*PValue1 != TstIndex)
{
FAILURE("JudyLIns failed - Index missing, population =", TotalPop);
}
else
{
// not ready for this yet! printf("Index moved -- TotalPop = %lu\n", TotalPop);
}
}
TotalPop++;
TotalIns++;
}
return (Seed1); // New seed
}
#undef __FUNCTI0N__
#define __FUNCTI0N__ "TestJudyGet"
Word_t
TestJudyGet(void *J1, void *JL, Word_t Seed, Word_t Elements)
{
Word_t LowIndex = ~0UL;
Word_t TstIndex;
Word_t elm;
Word_t *PValue;
Word_t Seed1;
int Rcode;
for (Seed1 = Seed, elm = 0; elm < Elements; elm++)
{
Seed1 = GetNextIndex(Seed1);
if (DFlag)
TstIndex = Swizzle(Seed1);
else
TstIndex = Seed1;
if (TstIndex < LowIndex)
LowIndex = TstIndex;
J1T(Rcode, J1, TstIndex);
if (Rcode != 1)
FAILURE("Judy1Test Rcode != 1", (Word_t) Rcode);
JLG(PValue, JL, TstIndex);
if (PValue == (Word_t *) NULL)
FAILURE("JudyLGet ret PValue = NULL", 0L);
if (*PValue != TstIndex)
FAILURE("JudyLGet ret wrong Value at", elm);
}
return(LowIndex);
}
#undef __FUNCTI0N__
#define __FUNCTI0N__ "TestJudyDup"
Word_t
TestJudyDup(void **J1, void **JL, Word_t Seed, Word_t Elements)
{
Word_t LowIndex = ~0UL;
Word_t TstIndex;
Word_t elm;
Word_t *PValue;
Word_t Seed1;
int Rcode;
for (Seed1 = Seed, elm = 0; elm < Elements; elm++)
{
Seed1 = GetNextIndex(Seed1);
if (DFlag)
TstIndex = Swizzle(Seed1);
else
TstIndex = Seed1;
if (TstIndex < LowIndex)
LowIndex = TstIndex;
J1S(Rcode, *J1, TstIndex);
if (Rcode != 0)
FAILURE("Judy1Set Rcode != 0", (Word_t) Rcode);
JLI(PValue, *JL, TstIndex);
if (PValue == (Word_t *) NULL)
FAILURE("JudyLIns ret PValue = NULL", 0L);
if (*PValue != TstIndex)
FAILURE("JudyLIns ret wrong Value at", elm);
}
return(LowIndex);
}
#undef __FUNCTI0N__
#define __FUNCTI0N__ "TestJudyCount"
int
TestJudyCount(void *J1, void *JL, Word_t LowIndex, Word_t Elements)
{
Word_t elm;
Word_t Count1, CountL;
Word_t TstIndex = LowIndex;
int Rcode;
TstIndex = LowIndex;
for (elm = 0; elm < Elements; elm++)
{
J1C(Count1, J1, LowIndex, TstIndex);
if (Count1 == JERR)
FAILURE("Judy1Count ret JERR", (Word_t) Count1);
if (Count1 != (elm + 1))
{
J1C(CountL, J1, 0, -1);
printf("J1C(%lu, J1, 0, -1)\n", CountL);
JLC(CountL, JL, 0, -1);
printf("JLC(%lu, JL, 0, -1)\n", CountL);
printf("LowIndex = 0x%lx, TstIndex = 0x%lx, diff = %lu\n", LowIndex,
TstIndex, TstIndex - LowIndex);
JLC(CountL, JL, LowIndex, TstIndex);
printf("CountL = %lu, Count1 = %lu, should be: elm + 1 = %lu\n", CountL, Count1, elm + 1);
FAILURE("J1C at", elm);
}
JLC(CountL, JL, LowIndex, TstIndex);
if (CountL == JERR)
FAILURE("JudyLCount ret JERR", (Word_t) CountL);
if (CountL != (elm + 1)) FAILURE("JLC at", elm);
J1N(Rcode, J1, TstIndex);
}
return(0);
}
#undef __FUNCTI0N__
#define __FUNCTI0N__ "TestJudyNext"
Word_t TestJudyNext(void *J1, void *JL, Word_t LowIndex, Word_t Elements)
{
Word_t JLindex, J1index;
Word_t *PValue;
Word_t elm;
int Rcode;
// Get an Index low enough for Elements
J1index = JLindex = LowIndex;
JLF(PValue, JL, JLindex);
J1F(Rcode, J1, J1index);
for (elm = 0; elm < Elements; elm++)
{
if (PValue == NULL)
FAILURE("JudyLNext ret NULL PValue at", elm);
if (Rcode != 1)
FAILURE("Judy1Next Rcode != 1 =", (Word_t) Rcode);
if (JLindex != J1index)
FAILURE("Judy1Next & Judy1Next ret different PIndex at", elm);
JLN(PValue, JL, JLindex); // Get next one
J1N(Rcode, J1, J1index); // Get next one
}
// perhaps a check should be done here -- if I knew what to expect.
return(JLindex); // return last one
}
#undef __FUNCTI0N__
#define __FUNCTI0N__ "TestJudyPrev"
int
TestJudyPrev(void *J1, void *JL, Word_t HighIndex, Word_t Elements)
{
Word_t JLindex, J1index;
Word_t *PValue;
Word_t elm;
int Rcode;
// Get an Index high enough for Elements
J1index = JLindex = HighIndex;
JLL(PValue, JL, JLindex);
J1L(Rcode, J1, J1index);
for (elm = 0; elm < Elements; elm++)
{
if (PValue == NULL)
FAILURE("JudyLPrev ret NULL PValue at", elm);
if (Rcode != 1)
FAILURE("Judy1Prev Rcode != 1 =", (Word_t) Rcode);
if (JLindex != J1index)
FAILURE("Judy1Prev & Judy1Prev ret different PIndex at", elm);
JLP(PValue, JL, JLindex); // Get previous one
J1P(Rcode, J1, J1index); // Get previous one
}
// perhaps a check should be done here -- if I knew what to expect.
return(0);
}
#undef __FUNCTI0N__
#define __FUNCTI0N__ "TestJudyNextEmpty"
int
TestJudyNextEmpty(void *J1, void *JL, Word_t LowIndex, Word_t Elements)
{
Word_t elm;
Word_t JLindex, J1index;
Word_t Seed1;
int Rcode; // Return code
// Set 1st search to ..
Seed1 = LowIndex;
J1index = JLindex = Seed1;
for (elm = 0; elm < Elements; elm++)
{
Word_t *PValue;
// Find next Empty Index, JLindex is modified by JLNE
JLNE(Rcode, JL, JLindex); // Rcode = JudyLNextEmpty(JL, &JLindex, PJE0)
if (Rcode != 1)
FAILURE("JudyLNextEmpty Rcode != 1 =", (Word_t) Rcode);
if (pFlag) { printf("JNE: %8lu\t0x%lx\n", elm, JLindex); }
// Find next Empty Index, J1index is modified by J1NE
J1NE(Rcode, J1, J1index); // Rcode = Judy1NextEmpty(J1, &J1index, PJE0)
if (Rcode != 1)
FAILURE("Judy1NextEmpty Rcode != 1 =", (Word_t) Rcode);
if (J1index != JLindex)
FAILURE("JLNE != J1NE returned index at", elm);
J1T(Rcode, J1, J1index);
if (Rcode != 0)
FAILURE("J1NE returned non-empty Index =", J1index);
JLG(PValue, JL, JLindex);
if (PValue != (Word_t *) NULL)
FAILURE("JLNE returned non-empty Index =", JLindex);
Seed1 = GetNextIndex(Seed1);
J1index = JLindex = Seed1;
}
return(0);
}
// Routine to JudyPrevEmpty routines
#undef __FUNCTI0N__
#define __FUNCTI0N__ "TestJudyPrevEmpty"
int
TestJudyPrevEmpty(void *J1, void *JL, Word_t HighIndex, Word_t Elements)
{
Word_t elm;
Word_t JLindex, J1index;
Word_t Seed1;
int Rcode;
// Set 1st search to ..
Seed1 = HighIndex;
J1index = JLindex = Seed1;
for (elm = 0; elm < Elements; elm++)
{
Word_t *PValue;
J1PE(Rcode, J1, J1index); // Rcode = Judy1PrevEmpty(J1, &J1index, PJE0)
if (Rcode != 1)
FAILURE("Judy1PrevEmpty Rcode != 1 =", (Word_t) Rcode);
if (pFlag) { printf("JPE: %8lu\t0x%lx\n", elm, J1index); }
// Find next Empty Index, JLindex is modified by JLPE
JLPE(Rcode, JL, JLindex); // Rcode = JudyLPrevEmpty(JL, &JLindex, PJE0)
if (Rcode != 1)
FAILURE("JudyLPrevEmpty Rcode != 1 =", (Word_t) Rcode);
if (J1index != JLindex)
FAILURE("JLPE != J1PE returned index at", elm);
J1T(Rcode, J1, J1index);
if (Rcode != 0)
FAILURE("J1PE returned non-empty Index =", J1index);
JLG(PValue, JL, JLindex);
if (PValue != (Word_t *) NULL)
FAILURE("JLPE returned non-empty Index =", JLindex);
Seed1 = GetNextIndex(Seed1);
J1index = JLindex = Seed1;
}
return(0);
}
#undef __FUNCTI0N__
#define __FUNCTI0N__ "TestJudyDel"
int
TestJudyDel(void **J1, void **JL, Word_t Seed, Word_t Elements)
{
Word_t TstIndex;
Word_t elm;
Word_t Seed1;
int Rcode;
// Only delete half of thoes inserted
for (Seed1 = Seed, elm = 0; elm < (Elements / 2); elm++)
{
Seed1 = GetNextIndex(Seed1);
if (DFlag)
TstIndex = Swizzle(Seed1);
else
TstIndex = Seed1;
if (pFlag) { printf("Del: %8lu\t0x%lx\n", elm, TstIndex); }
TotalDel++;
J1U(Rcode, *J1, TstIndex);
if (Rcode != 1)
FAILURE("Judy1Unset ret Rcode != 1", (Word_t) Rcode);
JLD(Rcode, *JL, TstIndex);
if (Rcode != 1)
FAILURE("JudyLDel ret Rcode != 1", (Word_t) Rcode);
TotalPop--;
}
return(0);
}
// Routine to get next size of Indexes
int // return 1 if last number
NextNumb(Word_t * PNumber, // pointer to returned next number
double *PDNumb, // Temp double of above
double DMult, // Multiplier
Word_t MaxNumb) // Max number to return
{
Word_t num;
// Save prev number
Word_t PrevNumb = *PNumber;
// Verify integer number increased
for (num = 0; num < 1000; num++)
{
// Calc next number
*PDNumb *= DMult;
// Return it in integer format
*PNumber = (Word_t) (*PDNumb + 0.5);
if (*PNumber != PrevNumb)
break;
}
// Verify it did exceed max ulong
if ((*PDNumb + 0.5) > (double)(-1UL))
{
// It did, so return max number
*PNumber = -1UL;
return (1); // flag it
}
// Verify it did not exceed max number
if ((*PDNumb + 0.5) > (double)MaxNumb)
{
// it did, so return max
*PNumber = MaxNumb;
return(1); // flag it
}
return(0); // more available
}
------------------------------------------------------------------------------
Come build with us! The BlackBerry® Developer Conference in SF, CA
is the only developer event you need to attend this year. Jumpstart your
developing skills, take BlackBerry mobile applications to market and stay
ahead of the curve. Join us from November 9-12, 2009. Register now!
http://p.sf.net/sfu/devconf
_______________________________________________
Judy-devel mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/judy-devel