Hi Stephane, It's a problem of accurate initial guess. I got a good initial guess by doing a homotopy down from phi=1000. The solution should be
IFun{Float64,Interval{Float64}}([17.0558,-9.62248e-7,2.40562e-7,-5.76944e-14,4.82252e-15],Interval{Float64}(3.514457e-7,7.60773e-7)) If you replace your initial guess with the this solution it should work, also as you perturb your parameters. (These subtleties are why I'm hesitant to build in a nonlinear solver.) Hope that helps! Sheehan On 10 Jul 2014, at 8:21 pm, 'Stéphane Laurent' via julia-users <julia-users@googlegroups.com> wrote: > Hello Sheehan, > > I get a failure with the following example, do you have an idea about the > why ?: > > # solves u" = phi²*sinh(u)-2u'/(x+gamma) , u'(a)=-xi, u'(R)=0 > a= 3.514457e-07 > R= 7.60773e-07 > x=Fun(identity, Interval(a,R)) > d=x.domain > B=neumann(d) > D=diff(d) > # Solves Lu + g(u) == 0 > phi=1.341211 > gamma=0.8585931 > L = D^2 + 2/(x.+gamma)*D > g = u -> -phi^2*(exp(u)-exp(-u))/2; gp = u -> -phi^2*(exp(u)+exp(-u))/2 > > u=0.x #initial guess > xi=9.403218 > for k=1:5 > u=u-[B,L+gp(u)]\[diff(u)[a]+xi,diff(u)[R],L*u+g(u)]; > end > > > julia> u > IFun{Float64,Interval{Float64}}([NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN … > NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN],Interval{Float64}(3.514457e-7,7.60773e-7)) > > >