It seems https://github.com/daviddelaat/MultiPoly.jl/ could do something 
like that.

For example:

using MultiPoly

x, y, z = generators(MPoly{Float64}, :x, :y, :z);

 p = (x+y+z)^2
# MultiPoly.MPoly{Float64}(x^2 + 2.0x*y + 2.0x*z + y^2 + 2.0y*z + z^2)

p.terms
# DataStructures.OrderedDict{Array{Int64,1},Float64} with 6 entries:
#  [2,0,0] => 1.0
#  [1,1,0] => 2.0
#  [1,0,1] => 2.0
#  [0,2,0] => 1.0
#  [0,1,1] => 2.0
#  [0,0,2] => 1.0



On Thursday, June 4, 2015 at 1:50:15 AM UTC+2, Júlio Hoffimann wrote:
>
> Hi,
>
> I would like to share the solution for my use case with you. I needed the 
> Vandermonde-ish matrix to implement another method in GeoStats.jl 
> <https://github.com/juliohm/GeoStats.jl>
>
> The multinom_exp() 
> <https://github.com/juliohm/GeoStats.jl/blob/master/src/utils.jl#L55> returns 
> the exponents in the multinomial expansion without expression generation. I 
> then call it inside unikrig() 
> <https://github.com/juliohm/GeoStats.jl/blob/master/src/kriging.jl#L116> to 
> generate the matrix F.
>
> Questions:
>
> 1. Any interest in adding multinom_exp() to Base?
> 2. Am I using the Julia doc system correctly? I can retrieve the doc 
> strings by typing '?' followed by the name of the function in the Julia 
> prompt, but not with help(funcname).
>
> Thank you all,
> -Júlio
>

Reply via email to