It seems https://github.com/daviddelaat/MultiPoly.jl/ could do something
like that.
For example:
using MultiPoly
x, y, z = generators(MPoly{Float64}, :x, :y, :z);
p = (x+y+z)^2
# MultiPoly.MPoly{Float64}(x^2 + 2.0x*y + 2.0x*z + y^2 + 2.0y*z + z^2)
p.terms
# DataStructures.OrderedDict{Array{Int64,1},Float64} with 6 entries:
# [2,0,0] => 1.0
# [1,1,0] => 2.0
# [1,0,1] => 2.0
# [0,2,0] => 1.0
# [0,1,1] => 2.0
# [0,0,2] => 1.0
On Thursday, June 4, 2015 at 1:50:15 AM UTC+2, Júlio Hoffimann wrote:
>
> Hi,
>
> I would like to share the solution for my use case with you. I needed the
> Vandermonde-ish matrix to implement another method in GeoStats.jl
> <https://github.com/juliohm/GeoStats.jl>
>
> The multinom_exp()
> <https://github.com/juliohm/GeoStats.jl/blob/master/src/utils.jl#L55> returns
> the exponents in the multinomial expansion without expression generation. I
> then call it inside unikrig()
> <https://github.com/juliohm/GeoStats.jl/blob/master/src/kriging.jl#L116> to
> generate the matrix F.
>
> Questions:
>
> 1. Any interest in adding multinom_exp() to Base?
> 2. Am I using the Julia doc system correctly? I can retrieve the doc
> strings by typing '?' followed by the name of the function in the Julia
> prompt, but not with help(funcname).
>
> Thank you all,
> -Júlio
>