Here's a new hit from Elvis Presley - You're The Devil in Disguise.
Nothing to do with Apple this time though.
/*
 * Indeo Video v3 compatible decoder
 * Copyright (c) 2009 - 2011 Maxim Poliakovski
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * This is a decoder for Intel Indeo Video v3.
 * It's based on vector quantization, run-length coding and motion compensation.
 * Known container formats: .avi and .mov
 * Known FOURCCs: 'IV31', 'IV32'
 * For documentation see:
 * http://wiki.multimedia.cx/index.php?title=Indeo_3
 */

#include "libavutil/imgutils.h"
#include "avcodec.h"
#include "dsputil.h"
#include "bytestream.h"
#include "get_bits.h"

#include "indeo3data.h"

/**
 *  RLE opcodes.
 */
enum {
    RLE_ESC_F9    = 249, ///< same as RLE_ESC_FA + do the same with next block
    RLE_ESC_FA    = 250, ///< INTRA: skip block, INTER: copy data from reference
    RLE_ESC_FB    = 251, ///< apply null delta to N blocks / skip N blocks
    RLE_ESC_FC    = 252, ///< same as RLE_ESC_FD + do the same with next block
    RLE_ESC_FD    = 253, ///< apply null delta to all remaining lines of this block
    RLE_ESC_FE    = 254, ///< apply null delta to all lines up to the 3rd line
    RLE_ESC_FF    = 255  ///< apply null delta to all lines up to the 2nd line
};


/**
 *  Some constants for parsing frame bitstream flags.
 */
#define BS_8BIT_PEL     (1<<1) ///< 8bit pixel bitdepth indicator
#define BS_KEYFRAME     (1<<2) ///< intra frame indicator
#define BS_MV_Y_HALF    (1<<4) ///< vertical mv halfpel resolution indicator
#define BS_MV_X_HALF    (1<<5) ///< horizontal mv halfpel resolution indicator
#define BS_NONREF       (1<<8) ///< nonref (discardable) frame indicator
#define BS_BUFFER        9     ///< indicates which of two frame buffers should be used


typedef struct Plane {
    uint8_t         *buffers[2];
    uint8_t         *pixels[2]; ///< pointer to the actual pixel data of the buffers above
    uint32_t        width;
    uint32_t        height;
    uint32_t        pitch;
} Plane;

#define CELL_STACK_MAX  20

typedef struct Cell {
    int16_t         xpos;       ///< cell coordinates in 4x4 blocks
    int16_t         ypos;
    int16_t         width;      ///< cell width  in 4x4 blocks
    int16_t         height;     ///< cell height in 4x4 blocks
    uint8_t         tree;       ///< tree id: 0- MC tree, 1 - VQ tree
    const int8_t    *mv_ptr;    ///< ptr to the motion vector if any
} Cell;

typedef struct Indeo3DecodeContext {
    AVCodecContext *avctx;
    AVFrame         frame;
    DSPContext      dsp;

    GetBitContext   gb;
    int             need_resync;
    int             skip_bits;
    const uint8_t   *next_cell_data;
    const uint8_t   *last_byte;
    const int8_t    *mc_vectors;

    int16_t         width, height;
    uint32_t        frame_num;      ///< current frame number (zero-based)
    uint32_t        data_size;      ///< size of the frame data in bytes
    uint16_t        frame_flags;    ///< frame properties
    uint8_t         cb_offset;      ///< needed for selecting VQ tables
    uint8_t         buf_sel;        ///< active frame buffer: 0 - primary, 1 -secondary
    const uint8_t   *y_data_ptr;
    const uint8_t   *v_data_ptr;
    const uint8_t   *u_data_ptr;
    int32_t         y_data_size;
    int32_t         v_data_size;
    int32_t         u_data_size;
    const uint8_t   *alt_quant;     ///< secondary VQ table set for the modes 1 and 4
    Plane           planes[3];
} Indeo3DecodeContext;


static uint8_t requant_tab[8][128];

/**
 *  Build the static requantization table.
 *  This table is used to remap pixel values according to a specific
 *  quant index and thus avoid overflows while adding deltas.
 */
static av_cold void build_requant_tab(void)
{
    static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
    static int8_t deltas [8] = { 0, 1, 0,  4,  4, 1, 0, 1 };

    int i, j, step;

    for (i = 0; i < 8; i++) {
        step = i + 2;
        for (j = 0; j < 128; j++)
                requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
    }

    /* some last elements calculated above will have values >= 128 */
    /* pixel values shall never exceed 127 so set them to non-overflowing values */
    /* according with the quantization step of the respective section */
    requant_tab[0][127] = 126;
    requant_tab[1][119] = 118;
    requant_tab[1][120] = 118;
    requant_tab[2][126] = 124;
    requant_tab[2][127] = 124;
    requant_tab[6][124] = 120;
    requant_tab[6][125] = 120;
    requant_tab[6][126] = 120;
    requant_tab[6][127] = 120;

    /* Patch for compatibility with the Intel's binary decoders */
    requant_tab[1][7] = 10;
    requant_tab[4][8] = 10;
}


/**
 *  Allocate frame buffers and initialize plane descriptors.
 */
static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx, AVCodecContext *avctx)
{
    int p, luma_width, luma_height, chroma_width, chroma_height;
    int luma_pitch, chroma_pitch, luma_size, chroma_size;

    luma_width  = ctx->width;
    luma_height = ctx->height;

    if (luma_width  < 16 || luma_width  > 640 ||
        luma_height < 16 || luma_height > 480 ||
        luma_width  &  3 || luma_height &   3) {
        av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
               luma_width, luma_height);
        return -1;
    }

    chroma_width  = FFALIGN(luma_width  >> 2, 4);
    chroma_height = FFALIGN(luma_height >> 2, 4);

    luma_pitch   = FFALIGN(luma_width,   16);
    chroma_pitch = FFALIGN(chroma_width, 16);

    /* Calculate size of the luminance plane.  */
    /* Add one line more for INTRA prediction. */
    luma_size = luma_pitch * (luma_height + 1);

    /* Calculate size of a chrominance planes. */
    /* Add one line more for INTRA prediction. */
    chroma_size = chroma_pitch * (chroma_height + 1);

    /* allocate frame buffers */
    for (p = 0; p < 3; p++) {
        ctx->planes[p].pitch  = (!p ? luma_pitch  : chroma_pitch);
        ctx->planes[p].width  = (!p ? luma_width  : chroma_width);
        ctx->planes[p].height = (!p ? luma_height : chroma_height);

        ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
        ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);

        /* fill the INTRA prediction lines with the middle pixel value = 64 */
        memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
        memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);

        /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
        ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
        ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
    }

    return 0;
}


/**
 *  Dispose frame buffers.
 */
static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
{
    int p;

    for (p = 0; p < 3; p++) {
        av_freep(&ctx->planes[p].buffers[0]);
        av_freep(&ctx->planes[p].buffers[1]);
    }
}


/**
 *  Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
 *  the cell(x, y) in the current frame.
 *
 *  @param ctx      [in] pointer to the decoder context
 *  @param plane    [in] pointer to the plane descriptor
 *  @param cell     [in] pointer to the cell  descriptor
 */
static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
{
    int     h, w, mv_x, mv_y, offset, offset_dst;
    uint8_t *src, *dst;

    /* setup output and reference pointers */
    offset_dst  = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
    dst         = plane->pixels[ctx->buf_sel] + offset_dst;
    mv_y        = cell->mv_ptr[0];
    mv_x        = cell->mv_ptr[1];
    offset      = offset_dst + mv_y * plane->pitch + mv_x;
    src         = plane->pixels[ctx->buf_sel ^ 1] + offset;

    h = cell->height << 2;

    for (w = cell->width; w > 0;) {
        /* copy using 16xH blocks */
        if (!((cell->xpos << 2) & 15) && w >= 4) {
            for (; w >= 4; src += 16, dst += 16, w -= 4)
                ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
        }

        /* copy using 8xH blocks */
        if (!((cell->xpos << 2) & 7) && w >= 2) {
            ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
            w -= 2;
            src += 8;
            dst += 8;
        }

        if (w >= 1) {
            copy_block4(dst, src, plane->pitch, plane->pitch, h);
            w--;
            src += 4;
            dst += 4;
        }
    }
}


/**
 *  Average 4/8 pixels at once without rounding using softSIMD
 */
#define AVG_32(dst, src, ref) \
    *((uint32_t *)((dst))) = ((*((uint32_t *)((src))) + *((uint32_t *)((ref)))) >> 1) & 0x7F7F7F7F

#define AVG_64(dst, src, ref) \
    *((uint64_t *)((dst))) = ((*((uint64_t *)((src))) + *((uint64_t *)((ref)))) >> 1) & 0x7F7F7F7F7F7F7F7F


/**
 *  Replicate each even pixel as follows:
 *  ABCDEFGH -> AACCEEGG
 */
static inline uint64_t replicate64(uint64_t a) {
#if HAVE_BIGENDIAN
    a &= 0xFF00FF00FF00FF00;
    a |= a >> 8;
#else
    a &= 0x00FF00FF00FF00FF;
    a |= a << 8;
#endif
    return a;
}

static inline uint32_t replicate32(uint32_t a) {
#if HAVE_BIGENDIAN
    a &= 0xFF00FF00;
    a |= a >> 8;
#else
    a &= 0x00FF00FF;
    a |= a << 8;
#endif
    return a;
}


/**
 *  Fill n lines with 64bit pixel value pix
 */
static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n, int32_t row_offset)
{
    for (; n > 0; dst += row_offset, n--)
      *((uint64_t *)(dst)) = pix;
}


/**
 *  Error codes for cell decoding.
 */
enum {
    IV3_NOERR       = 0,
    IV3_BAD_RLE     = 1,
    IV3_BAD_DATA    = 2,
    IV3_BAD_COUNTER = 3,
    IV3_UNSUPPORTED = 4,
    IV3_OUT_OF_DATA = 5
};


#define BUFFER_PRECHECK \
if (data_ptr >= last_ptr) { \
    error = IV3_OUT_OF_DATA; \
    goto fail; \
}


#define DECODE_CELL_TEMPLATE(h_zoom, v_zoom, PREPARE_DELTA, APPLY_DELTA,\
                             RLE_BLOCK_ACTION, RLE_CODE_ACTION)\
    for (y = 0, is_first_row = 1; y < cell->height; is_first_row = 0, y += 1 + (v_zoom)) {\
        for (x = 0; x < cell->width; x += 1 + (h_zoom)) {\
            ref = ref_block;\
            dst = block;\
\
            if (rle_blocks > 0) {\
                RLE_BLOCK_ACTION; /* mode-dependent block skip/copy action */ \
                rle_blocks--;\
            } else {\
                for (line = 0; line < 4;) {\
                    num_lines = 1;\
                    is_top_of_cell = is_first_row & !line;\
\
                    PREPARE_DELTA;\
                    BUFFER_PRECHECK; \
                    code = *data_ptr++; \
                    if (code < 248) {\
                        if (code < delta_tab->num_dyads) {\
                            BUFFER_PRECHECK; \
                            dyad1 = *data_ptr++; \
                            dyad2 = code;        \
                            if (dyad1 > delta_tab->num_dyads || dyad1 >= 248) {\
                                error = IV3_BAD_DATA; \
                                goto fail; \
                            }\
                        } else {\
                            /* process QUADS */ \
                            code -= delta_tab->num_dyads;       \
                            dyad1 = code / delta_tab->quad_exp; \
                            dyad2 = code % delta_tab->quad_exp; \
                            if (swap_quads[line & 1]) \
                                FFSWAP(unsigned int, dyad1, dyad2); \
                        }\
                        APPLY_DELTA;\
                    } else {\
                        /* process RLE codes */ \
                        switch (code) {\
                        case RLE_ESC_FC: \
                            skip_flag  = 0; \
                            rle_blocks = 1; \
                            code       = 253; \
                            /* FALLTHROUGH */ \
\
                        case RLE_ESC_FF: \
                        case RLE_ESC_FE: \
                        case RLE_ESC_FD: \
                            num_lines = 257 - code - line; \
                            if (num_lines <= 0) {\
                                error = IV3_BAD_RLE;    \
                                goto fail; \
                            }\
                            RLE_CODE_ACTION;    \
                            break;              \
\
                        case RLE_ESC_FB: \
                            BUFFER_PRECHECK; \
                            code = *data_ptr++; \
                            rle_blocks = (code & 0x1F) - 1; /* set block counter */ \
                            if (code >= 64 || rle_blocks < 0) {\
                                error = IV3_BAD_COUNTER;\
                                goto fail;\
                            }\
                            skip_flag = code & 0x20;\
                            num_lines = 4 - line; /* enforce next block processing */\
                            if (mode >= 10 || (cell->mv_ptr || !skip_flag))\
                                RLE_CODE_ACTION;\
                            break;\
\
                        case RLE_ESC_F9: \
                            skip_flag  = 1; \
                            rle_blocks = 1; \
                            /* FALLTHROUGH */\
\
                        case RLE_ESC_FA: \
                            if (line) {\
                                error = IV3_BAD_RLE; \
                                goto fail; \
                            }\
                            num_lines = 4; /* enforce next block processing */\
                            if (cell->mv_ptr)\
                                RLE_CODE_ACTION;\
                            break;\
\
                        default: \
                            error = IV3_UNSUPPORTED;\
                            goto fail;\
                        }\
                    }\
\
                    line += num_lines;\
                    ref  += row_offset * (num_lines << (v_zoom));\
                    dst  += row_offset * (num_lines << (v_zoom));\
                }\
            }\
\
            /* move to next horizontal block */\
            block     += 4 << (h_zoom);\
            ref_block += 4 << (h_zoom);\
        }\
\
        /* move to next line of blocks */\
        ref_block += blk_row_offset;\
        block     += blk_row_offset;\
    }

#define NO_ACTION

#define RLE_BLOCK_COPY \
    if (cell->mv_ptr || !skip_flag) \
        copy_block4(dst, ref, row_offset, row_offset, 4 << (zoom_fac))

#define RLE_BLOCK_COPY_8 \
    pix64 = *((uint64_t *)(ref));\
    if (is_first_row) {/* special prediction case: top line of a cell */\
        pix64 = replicate64(pix64);\
        fill_64(dst + row_offset, pix64, 7, row_offset);\
        AVG_64(dst, ref, dst + row_offset);\
    } else \
        fill_64(dst, pix64, 8, row_offset)

#define RLE_LINES_COPY \
    copy_block4(dst, ref, row_offset, row_offset, num_lines << (zoom_fac))

#define RLE_LINES_COPY_M10 \
    pix64 = *((uint64_t *)(ref));\
    if (is_top_of_cell) {\
        pix64 = replicate64(pix64);\
        fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
        AVG_64(dst, ref, dst + row_offset);\
    } else \
        fill_64(dst, pix64, num_lines << 1, row_offset)

/* select primary VQ table for odd, secondary for even lines */
#define SELECT_DELTA_TAB \
    delta_tab = delta[line & 1]

#define APPLY_DELTA_4 \
    *((uint16_t *)(dst+line_offset  )) = *((uint16_t *)(ref  )) + delta_tab->deltas[dyad1];\
    *((uint16_t *)(dst+line_offset+2)) = *((uint16_t *)(ref+2)) + delta_tab->deltas[dyad2];\
    if (mode >= 3) {\
    if (is_top_of_cell && !cell->ypos) {\
        *((uint32_t *)(dst)) = *((uint32_t *)(dst+row_offset));\
    } else \
        AVG_32(dst, ref, dst + row_offset);\
    }

#define APPLY_DELTA_8 \
    /* apply two 32-bit VQ deltas to next even line */\
    if (is_top_of_cell) { \
        *((uint32_t *)(dst+row_offset  )) = \
        replicate32(*((uint32_t *)(ref  ))) + delta_tab->deltas_m10[dyad1];\
        *((uint32_t *)(dst+row_offset+4)) = \
            replicate32(*((uint32_t *)(ref+4))) + delta_tab->deltas_m10[dyad2];\
    } else { \
        *((uint32_t *)(dst+row_offset  )) = \
            *((uint32_t *)(ref  )) + delta_tab->deltas_m10[dyad1];\
        *((uint32_t *)(dst+row_offset+4)) = \
            *((uint32_t *)(ref+4)) + delta_tab->deltas_m10[dyad2];\
    } \
    /* odd lines are not coded but rather interpolated/replicated */\
    /* first line of the cell on the top of image? - replicate */\
    /* otherwise - interpolate */\
    if (is_top_of_cell && !cell->ypos) {\
        *((uint64_t *)(dst)) = *((uint64_t *)(dst+row_offset));\
    } else \
        AVG_64(dst, ref, dst + row_offset);


#define APPLY_DELTA_1011_INTER \
    if (mode == 10) { \
        *((uint32_t *)(dst             )) += delta_tab->deltas_m10[dyad1];\
        *((uint32_t *)(dst+4           )) += delta_tab->deltas_m10[dyad2];\
        *((uint32_t *)(dst+row_offset  )) += delta_tab->deltas_m10[dyad1];\
        *((uint32_t *)(dst+row_offset+4)) += delta_tab->deltas_m10[dyad2];\
    } else { \
        *((uint16_t *)(dst             )) += delta_tab->deltas[dyad1];\
        *((uint16_t *)(dst+2           )) += delta_tab->deltas[dyad2];\
        *((uint16_t *)(dst+row_offset  )) += delta_tab->deltas[dyad1];\
        *((uint16_t *)(dst+row_offset+2)) += delta_tab->deltas[dyad2];\
    }


/**
 *  Decode a vector-quantized cell.
 *  It consists of several routines, each of which handles one or more "modes"
 *  with which a cell can be encoded.
 *
 *  @param ctx      [in] pointer to the decoder context
 *  @param avctx    [in] ptr to the AVCodecContext
 *  @param plane    [in] pointer to the plane descriptor
 *  @param cell     [in] pointer to the cell  descriptor
 *  @param data_ptr [in] pointer to the compressed data
 *  @param last_ptr [in] pointer to the last byte to catch reads past end of buffer
 *  @return         number of cunsumed bytes or -1 if error
 */
static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx, Plane *plane,
                       Cell *cell, const uint8_t *data_ptr, const uint8_t *last_ptr)
{
    int          x, y, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
    int          rle_blocks, row_offset, blk_row_offset, line, num_lines;
    int          is_first_row, is_top_of_cell, skip_flag, zoom_fac;
    int          offset, line_offset, error, swap_quads[2];
    unsigned int dyad1, dyad2;
    uint8_t      code, *block, *ref_block = 0, *ref, *dst;
    const vqEntry *delta[2], *delta_tab;
    uint64_t     pix64;

    const uint8_t   *data_start = data_ptr;

    /* get coding mode and VQ table index from the VQ descriptor byte */
    code     = *data_ptr++;
    mode     = code >> 4;
    vq_index = code & 0xF;

    /* setup output and reference pointers */
    offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
    block  =  plane->pixels[ctx->buf_sel] + offset;
    if (!cell->mv_ptr) {
        /* use previous line as reference for INTRA cells */
        ref_block = block - plane->pitch;
    } else {
        if (mode >= 10) {
            /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
            /* so we don't need to do data copying for each RLE code later */
            copy_cell(ctx, plane, cell);
        } else {
            /* set the pointer to the reference pixels for modes 0-4 INTER */
            mv_y      = cell->mv_ptr[0];
            mv_x      = cell->mv_ptr[1];
            offset   += mv_y * plane->pitch + mv_x;
            ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
        }
    }

    /* select VQ tables as follows: */
    /* modes 0 and 3 use only the primary table for all lines in a block */
    /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
    if (mode == 1 || mode == 4) {
        code        = ctx->alt_quant[vq_index];
        prim_indx   = (code >> 4)  + ctx->cb_offset;
        second_indx = (code & 0xF) + ctx->cb_offset;
    } else {
        vq_index += ctx->cb_offset;
        prim_indx = second_indx = vq_index;
    }

    if (prim_indx >= 24 || second_indx >= 24) {
        av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
               prim_indx, second_indx);
        return -1;
    }

    delta[0] = &vq_tab[second_indx];
    delta[1] = &vq_tab[prim_indx];
    swap_quads[0] = second_indx >= 16;
    swap_quads[1] = prim_indx   >= 16;

    /* requantize the prediction if VQ index of this cell differs from VQ index */
    /* of the predicted cell in order to avoid overflows. */
    if (vq_index >= 8 && ref_block) {
        for (x = 0; x < cell->width << 2; x++)
            ref_block[x] = requant_tab[vq_index & 7][ref_block[x]];
    }

    row_offset     =  plane->pitch;
    blk_row_offset = (row_offset << 3) - (cell->width << 2);

    rle_blocks = 0;  // reset RLE block counter
    skip_flag  = 0;
    error = IV3_NOERR;

    switch (mode) {
    case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
    case 1:
    case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
    case 4:
        if (mode >= 3 && cell->mv_ptr) {
            av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
            return -1;
        }

        zoom_fac       =  mode >= 3;
        line_offset    = (zoom_fac) ? row_offset : 0;
        blk_row_offset = (row_offset << (2 + zoom_fac)) - (cell->width << 2);
        DECODE_CELL_TEMPLATE(0, zoom_fac, SELECT_DELTA_TAB, APPLY_DELTA_4,
                             RLE_BLOCK_COPY, RLE_LINES_COPY);
        break;

    case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
    case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
        delta_tab = delta[1];

        if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
            DECODE_CELL_TEMPLATE(1, 1, NO_ACTION, APPLY_DELTA_8,
                                 RLE_BLOCK_COPY_8, RLE_LINES_COPY_M10);
        } else { /* mode 10 and 11 INTER processing */
            if (mode == 11 && !cell->mv_ptr) {
               av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
               return -1;
            }

            zoom_fac  = mode == 10;
            DECODE_CELL_TEMPLATE(zoom_fac, 1, NO_ACTION, APPLY_DELTA_1011_INTER,
                                 NO_ACTION, NO_ACTION);
        }
        break;

    default:
        av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
        return -1;
    }//switch mode

fail:
    switch (error) {
    case IV3_BAD_RLE:
        av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the line %d\n",
               mode, data_ptr[-1], line);
    return -1;
    case IV3_BAD_DATA:
        av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
    return -1;
    case IV3_BAD_COUNTER:
        av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
    return -1;
    case IV3_UNSUPPORTED:
        av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
        return -1;
    case IV3_OUT_OF_DATA:
        av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
        return -1;
    }

    return (data_ptr - data_start); /* report number of bytes consumed from the input buffer */
}


/**
 *  Binary tree codes.
 */
enum {
    H_SPLIT    = 0,
    V_SPLIT    = 1,
    INTRA_NULL = 2,
    INTER_DATA = 3
};


#define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1

#define UPDATE_BITPOS(n) \
    ctx->skip_bits  += (n); \
    ctx->need_resync = 1

#define RESYNC_BITSTREAM \
    if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
        skip_bits_long(&ctx->gb, ctx->skip_bits);              \
        ctx->skip_bits   = 0;                                  \
        ctx->need_resync = 0;                                  \
    }

#define CHECK_CELL \
    if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) ||               \
        curr_cell.ypos + curr_cell.height > (plane->height >> 2)) {             \
        av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n",   \
               curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
        return -1;                                                              \
    }


/**
 *  Parse plane's binary tree recursively.
 */
static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx, Plane *plane,
                         int code, Cell *ref_cell, const int depth, const int strip_width)
{
    Cell    curr_cell;
    int     bytes_used;

    if (depth <= 0) {
        av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
        return -1; // unwind recursion
    }

    curr_cell = *ref_cell; // clone parent cell
    if (code == H_SPLIT) {
        SPLIT_CELL(ref_cell->height, curr_cell.height);
        ref_cell->ypos   += curr_cell.height;
        ref_cell->height -= curr_cell.height;
    } else if (code == V_SPLIT) {
        if (curr_cell.width > strip_width) {
            /* split strip */
            curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
        } else
            SPLIT_CELL(ref_cell->width, curr_cell.width);
        ref_cell->xpos  += curr_cell.width;
        ref_cell->width -= curr_cell.width;
    }

    while (1) { /* loop until return */
        RESYNC_BITSTREAM;
        switch (code = get_bits(&ctx->gb, 2)) {
        case H_SPLIT:
        case V_SPLIT:
            if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth-1, strip_width))
                return -1;
            break;
        case INTRA_NULL:
            if (!curr_cell.tree) { /* MC tree INTRA code */
                curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
                curr_cell.tree   = 1; /* enter the VQ tree */
            } else { /* VQ tree NULL code */
                RESYNC_BITSTREAM;
                code = get_bits(&ctx->gb, 2);
                if (code >= 2) {
                    av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
                    return -1;
                }
                if (code == 1)
                    av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");

                CHECK_CELL
                copy_cell(ctx, plane, &curr_cell);
                return 0;
            }
            break;
        case INTER_DATA:
            if (!curr_cell.tree) { /* MC tree INTER code */
                /* get motion vector index and setup the pointer to the mv set */
                if (!ctx->need_resync)
                    ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
                curr_cell.mv_ptr = &ctx->mc_vectors[*(ctx->next_cell_data++) << 1];
                curr_cell.tree  = 1; /* enter the VQ tree */
                UPDATE_BITPOS(8);
            } else { /* VQ tree DATA code */
                if (!ctx->need_resync)
                    ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];

                CHECK_CELL
                bytes_used = decode_cell(ctx, avctx, plane, &curr_cell, ctx->next_cell_data, ctx->last_byte);
                if (bytes_used < 0)
                    return -1;

                UPDATE_BITPOS(bytes_used << 3);
                ctx->next_cell_data += bytes_used;
                return 0;
            }
            break;
        }
    }//while

    return 0;
}


/**
 *  Decode a plane (Y, V or U)
 */
static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx, Plane *plane,
                        const uint8_t *data, int32_t data_size, int32_t strip_width)
{
    Cell            curr_cell;
    int             num_vectors;

    /* each plane data starts with mc_vector_count field, */
    /* an optional array of motion vectors followed by the vq data */
    num_vectors = bytestream_get_le32(&data);
    ctx->mc_vectors  = num_vectors ? data : 0;

    /* init the bitreader */
    init_get_bits(&ctx->gb, &data[num_vectors * 2], data_size << 3);
    ctx->skip_bits   = 0;
    ctx->need_resync = 0;

    ctx->last_byte = data + data_size - 1;

    /* initialize the 1st cell and set its dimensions to whole plane */
    curr_cell.xpos   = curr_cell.ypos = 0;
    curr_cell.width  = plane->width  >> 2;
    curr_cell.height = plane->height >> 2;
    curr_cell.tree   = 0; // we are in the MC tree now
    curr_cell.mv_ptr = 0; // no motion vector = INTRA cell

    return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
}


#define OS_HDR_ID   MKBETAG('F', 'R', 'M', 'H')

/**
 *  Parse indeo3 frame headers
 */
static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
                                const uint8_t *buf, int buf_size)
{
    const uint8_t   *buf_ptr = buf, *bs_hdr;
    uint32_t        frame_num, word2, check_sum, data_size;
    uint32_t        y_offset, u_offset, v_offset, starts[3], ends[3];
    uint16_t        height, width;
    int             i, j;

    /* parse and check the OS header */
    frame_num = bytestream_get_le32(&buf_ptr);
    word2     = bytestream_get_le32(&buf_ptr);
    check_sum = bytestream_get_le32(&buf_ptr);
    data_size = bytestream_get_le32(&buf_ptr);

    if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
        av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
        return -1;
    }

    /* parse the bitstream header */
    bs_hdr = buf_ptr;

    if (bytestream_get_le16(&buf_ptr) != 32) {
        av_log(avctx, AV_LOG_ERROR, "Unsupported decoder version!\n");
        return -1;
    }

    ctx->frame_num   =  frame_num;
    ctx->frame_flags =  bytestream_get_le16(&buf_ptr);
    ctx->data_size   = (bytestream_get_le32(&buf_ptr) + 7) >> 3;
    ctx->cb_offset   = *buf_ptr++;

    if (ctx->data_size == 16)
        return 4;
    if (ctx->data_size > buf_size)
        ctx->data_size = buf_size;

    buf_ptr += 3; // skip reserved byte and checksum

    /* check frame dimensions */
    height = bytestream_get_le16(&buf_ptr);
    width  = bytestream_get_le16(&buf_ptr);
    if (av_image_check_size(width, height, 0, avctx))
        return -1;

    if (width != ctx->width || height != ctx->height) {
        av_dlog(avctx, "Frame dimensions changed!\n");

        ctx->width  = width;
        ctx->height = height;

        free_frame_buffers(ctx);
        allocate_frame_buffers(ctx, avctx);
        avcodec_set_dimensions(avctx, width, height);
    }

    y_offset = bytestream_get_le32(&buf_ptr);
    v_offset = bytestream_get_le32(&buf_ptr);
    u_offset = bytestream_get_le32(&buf_ptr);

    /* unfortunately there is no common order of planes in the buffer */
    /* so we use that sorting algo for determining planes data sizes  */
    starts[0] = y_offset;
    starts[1] = v_offset;
    starts[2] = u_offset;

    for (j = 0; j < 3; j++) {
        ends[j] = ctx->data_size;
        for (i = 2; i >= 0; i--)
            if (starts[i] < ends[j] && starts[i] > starts[j])
                ends[j] = starts[i];
    }

    ctx->y_data_size = ends[0] - starts[0];
    ctx->v_data_size = ends[1] - starts[1];
    ctx->u_data_size = ends[2] - starts[2];
    if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
        FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
        av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
        return -1;
    }

    ctx->y_data_ptr = bs_hdr + y_offset;
    ctx->v_data_ptr = bs_hdr + v_offset;
    ctx->u_data_ptr = bs_hdr + u_offset;
    ctx->alt_quant  = buf_ptr + sizeof(uint32_t);

    if (ctx->data_size == 16) {
        av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
        return 16;
    }

    if (ctx->frame_flags & BS_8BIT_PEL) {
        av_log(avctx, AV_LOG_ERROR, "8bit pixel format unsupported!\n");
        return -1;
    }

    if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
        av_log(avctx, AV_LOG_ERROR, "Halfpel motion vectors unsupported!\n");
        return -1;
    }

    return 0;
}


/**
 *  Convert and output the current plane.
 *  All pixel values will be upsampled by shifting right by one bit.
 *
 *  @param plane        [in]  pointer to the descriptor of the plane being processed
 *  @param buf_sel      [in]  indicates which frame buffer the input data stored in
 *  @param dst          [out] pointer to the buffer receiving converted pixels
 *  @param dst_pitch    [in]  pitch for moving to the next y line
 */
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, int dst_pitch)
{
    int             x,y;
    const uint32_t  *src32;
    const uint8_t   *src  = plane->pixels[buf_sel];
    uint32_t        pitch = plane->pitch, *dst32;

    for (y = 0; y < plane->height; y++) {
        src32 = (const uint32_t *)src;
        dst32 = (uint32_t *)dst;

        /* convert four pixels at once using softSIMD */
        for (x = 0; x < plane->width >> 2; x++)
            *dst32++ = (*src32++ & 0x7F7F7F7F) << 1;

        for (x <<= 2; x < plane->width; x++)
            dst[x] = src[x] << 1;

        src += pitch;
        dst += dst_pitch;
    }
}


/**
 *  Indeo3 decoder initializations.
 */
static av_cold int decode_init(AVCodecContext *avctx)
{
    Indeo3DecodeContext *ctx = avctx->priv_data;

    ctx->avctx     = avctx;
    ctx->width     = avctx->width;
    ctx->height    = avctx->height;
    avctx->pix_fmt = PIX_FMT_YUV410P;

    build_requant_tab();

    dsputil_init(&ctx->dsp, avctx);

    allocate_frame_buffers(ctx, avctx);

    return 0;
}


/**
 *  Main decoder function.
 */
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
                        AVPacket *avpkt)
{
    Indeo3DecodeContext *ctx = avctx->priv_data;
    const uint8_t *buf = avpkt->data;
    int buf_size       = avpkt->size;
    int res;

    res = decode_frame_headers(ctx, avctx, buf, buf_size);
    if (res < 0)
        return -1;

    /* skip sync(null) frames */
    if (res) {
        // we have processed 16 bytes but no data was decoded
        *data_size = 0;
        return buf_size;
    }

    /* skip droppable INTER frames if requested */
    if (ctx->frame_flags & BS_NONREF &&
       (avctx->skip_frame >= AVDISCARD_NONREF))
        return 0;

    /* skip INTER frames if requested */
    if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
        return 0;

    /* use BS_BUFFER flag for buffer switching */
    ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;

    /* decode luma plane */
    if (decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40))
        return -1;

    /* decode chroma planes */
    if (decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10))
        return -1;

    if (decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10))
        return -1;

    if (ctx->frame.data[0])
        avctx->release_buffer(avctx, &ctx->frame);

    ctx->frame.reference = 0;
    if (avctx->get_buffer(avctx, &ctx->frame) < 0) {
        av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
        return -1;
    }

    output_plane(&ctx->planes[0], ctx->buf_sel, ctx->frame.data[0], ctx->frame.linesize[0]);
    output_plane(&ctx->planes[1], ctx->buf_sel, ctx->frame.data[1], ctx->frame.linesize[1]);
    output_plane(&ctx->planes[2], ctx->buf_sel, ctx->frame.data[2], ctx->frame.linesize[2]);

    *data_size      = sizeof(AVFrame);
    *(AVFrame*)data = ctx->frame;

    return buf_size;
}


/**
 *  Indeo3 free function.
 */
static av_cold int decode_close(AVCodecContext *avctx)
{
    Indeo3DecodeContext *ctx = avctx->priv_data;

    free_frame_buffers(avctx->priv_data);

    if (ctx->frame.data[0])
        avctx->release_buffer(avctx, &ctx->frame);

    return 0;
}

AVCodec ff_indeo3_decoder = {
    .name           = "indeo3",
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = CODEC_ID_INDEO3,
    .priv_data_size = sizeof(Indeo3DecodeContext),
    .init           = decode_init,
    .close          = decode_close,
    .decode         = decode_frame,
    .long_name      = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
};
/*
 * Indeo Video v3 compatible decoder
 * Copyright (c) 2009 - 2011 Maxim Poliakovski
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#ifndef AVCODEC_INDEO3DATA_H
#define AVCODEC_INDEO3DATA_H

#include <stdint.h>

/*
 * Define compressed VQ tables.
 */

#define TAB_1_1 \
    PD(   0,   0), E2(   2,   2), E4(  -1,   3), E2(   4,   4), E4(   1,   5),\
    E2(  -4,   4), E4(  -2,   6), E4(   4,   9), E2(   9,   9), E4(   1,  10),\
    E4(  -5,   8), E4(   9,  15), E4(  -3,  12), E4(   4,  16), E2(  16,  16),\
    E4(   0,  18), E2( -12,  12), E4(  -9,  16), E4(  11,  27), E4(  19,  28),\
    E4(  -6,  22), E4(   4,  29), E2(  30,  30), E4(  -2,  33), E4( -18,  23),\
    E4( -15,  30), E4(  22,  46), E4(  13,  47), E4(  35,  49), E4( -11,  41),\
    E4(   4,  51), E2(  54,  54), E2( -34,  34), E4( -29,  42), E4(  -6,  60),\
    E4(  27,  76), E4(  43,  77), E4( -24,  55), E4(  14,  79), E4(  63,  83),\
    E4( -20,  74), E4(   2,  88), E2(  93,  93), E4( -52,  61), E4(  52, 120),\
    E4( -45,  75), E4(  75, 125), E4(  33, 122), E4( -13, 103), E4( -40,  96),\
    E4( -34, 127), E2( -89,  89), E4( -78, 105), E2(  12,  12), E2(  23,  23),\
    E2(  42,  42), E2(  73,  73)

#define TAB_1_2 \
    PD(   0,   0), E2(   3,   3), E4(  -1,   4), E2(   7,   7), E4(   2,   8),\
    E4(  -2,   9), E2(  -6,   6), E4(   6,  13), E2(  13,  13), E4(   1,  14),\
    E4(  -8,  12), E4(  14,  23), E4(  -5,  18), E4(   6,  24), E2(  24,  24),\
    E4(  -1,  27), E2( -17,  17), E4( -13,  23), E4(  16,  40), E4(  28,  41),\
    E4(  -9,  33), E4(   6,  43), E2(  46,  46), E4(  -4,  50), E4( -27,  34),\
    E4( -22,  45), E4(  34,  69), E4(  19,  70), E4(  53,  73), E4( -17,  62),\
    E4(   5,  77), E2(  82,  82), E2( -51,  51), E4( -43,  64), E4( -10,  90),\
    E4(  41, 114), E4(  64, 116), E4( -37,  82), E4(  22, 119), E4(  95, 124),\
    E4( -30, 111), E4( -78,  92), E4( -68, 113), E2(  18,  18), E2(  34,  34),\
    E2(  63,  63), E2( 109, 109)

#define TAB_1_3 \
    PD(   0,   0), E2(   4,   4), E4(  -1,   5), E4(   3,  10), E2(   9,   9),\
    E2(  -7,   7), E4(  -3,  12), E4(   8,  17), E2(  17,  17), E4(   1,  19),\
    E4( -11,  16), E4(  -6,  23), E4(  18,  31), E4(   8,  32), E2(  33,  33),\
    E4(  -1,  36), E2( -23,  23), E4( -17,  31), E4(  21,  54), E4(  37,  55),\
    E4( -12,  44), E4(   8,  57), E2(  61,  61), E4(  -5,  66), E4( -36,  45),\
    E4( -29,  60), E4(  45,  92), E4(  25,  93), E4(  71,  97), E4( -22,  83),\
    E4(   7, 102), E2( 109, 109), E2( -68,  68), E4( -57,  85), E4( -13, 120),\
    E4( -49, 110), E4(-104, 123), E2(  24,  24), E2(  46,  46), E2(  84,  84)

#define TAB_1_4 \
    PD(   0,   0), E2(   5,   5), E4(  -2,   7), E2(  11,  11), E4(   3,  13),\
    E2(  -9,   9), E4(  -4,  15), E4(  11,  22), E2(  21,  21), E4(   2,  24),\
    E4( -14,  20), E4(  23,  38), E4(  -8,  29), E4(  11,  39), E2(  41,  41),\
    E4(  -1,  45), E2( -29,  29), E4( -22,  39), E4(  27,  67), E4(  47,  69),\
    E4( -15,  56), E4(  11,  71), E2(  76,  76), E4(  -6,  83), E4( -45,  57),\
    E4( -36,  75), E4(  56, 115), E4(  31, 117), E4(  88, 122), E4( -28, 104),\
    E2( -85,  85), E4( -72, 106), E2(  30,  30), E2(  58,  58), E2( 105, 105)

#define TAB_1_5 \
    PD(   0,   0), E2(   6,   6), E4(  -2,   8), E2(  13,  13), E4(   4,  15),\
    E2( -11,  11), E4(  -5,  18), E4(  13,  26), E2(  26,  26), E4(   2,  29),\
    E4( -16,  24), E4(  28,  46), E4(  -9,  35), E4(  13,  47), E2(  49,  49),\
    E4(  -1,  54), E2( -35,  35), E4( -26,  47), E4(  32,  81), E4(  56,  83),\
    E4( -18,  67), E4(  13,  86), E2(  91,  91), E4(  -7,  99), E4( -54,  68),\
    E4( -44,  90), E4( -33, 124), E2(-103, 103), E4( -86, 127), E2(  37,  37),\
    E2(  69,  69)

#define TAB_1_6 \
    PD(   0,   0), E2(   7,   7), E4(  -3,  10), E2(  16,  16), E4(   5,  18),\
    E2( -13,  13), E4(  -6,  21), E4(  15,  30), E2(  30,  30), E4(   2,  34),\
    E4( -19,  28), E4(  32,  54), E4( -11,  41), E4(  15,  55), E2(  57,  57),\
    E4(  -1,  63), E2( -40,  40), E4( -30,  55), E4(  37,  94), E4(  65,  96),\
    E4( -21,  78), E4(  15, 100), E2( 106, 106), E4(  -8, 116), E4( -63,  79),\
    E4( -51, 105), E2(-120, 120), E2(  43,  43), E2(  80,  80)

#define TAB_1_7 \
    PD(   0,   0), E2(   8,   8), E4(  -3,  11), E2(  18,  18), E4(   5,  20),\
    E2( -15,  15), E4(  -7,  24), E4(  17,  35), E2(  34,  34), E4(   3,  38),\
    E4( -22,  32), E4(  37,  61), E4( -13,  47), E4(  17,  63), E2(  65,  65),\
    E4(  -1,  72), E2( -46,  46), E4( -35,  63), E4(  43, 107), E4(  75, 110),\
    E4( -24,  89), E4(  17, 114), E2( 121, 121), E4( -72,  91), E4( -58, 120),\
    E2(  49,  49), E2(  92,  92)

#define TAB_1_8 \
    PD(   0,   0), E2(   9,   9), E4(  -3,  12), E2(  20,  20), E4(   6,  23),\
    E2( -17,  17), E4(  -7,  27), E4(  19,  39), E2(  39,  39), E4(   3,  43),\
    E4( -24,  36), E4(  42,  69), E4( -14,  53), E4(  19,  71), E2(  73,  73),\
    E4(  -2,  80), E2( -52,  52), E4( -39,  70), E4(  48, 121), E4(  84, 124),\
    E4( -27, 100), E4( -81, 102), E2(  55,  55), E2( 104, 104)

#define TAB_2_1 \
    PD(   0,   0), E2(   2,   2), E4(   0,   2), E2(   4,   4), E4(   0,   4),\
    E2(  -4,   4), E4(  -2,   6), E4(   4,   8), E2(   8,   8), E4(   0,  10),\
    E4(  -4,   8), E4(   8,  14), E4(  -2,  12), E4(   4,  16), E2(  16,  16),\
    E4(   0,  18), E2( -12,  12), E4(  -8,  16), E4(  10,  26), E4(  18,  28),\
    E4(  -6,  22), E4(   4,  28), E2(  30,  30), E4(  -2,  32), E4( -18,  22),\
    E4( -14,  30), E4(  22,  46), E4(  12,  46), E4(  34,  48), E4( -10,  40),\
    E4(   4,  50), E2(  54,  54), E2( -34,  34), E4( -28,  42), E4(  -6,  60),\
    E4(  26,  76), E4(  42,  76), E4( -24,  54), E4(  14,  78), E4(  62,  82),\
    E4( -20,  74), E4(   2,  88), E2(  92,  92), E4( -52,  60), E4(  52, 118),\
    E4( -44,  74), E4(  74, 118), E4(  32, 118), E4( -12, 102), E4( -40,  96),\
    E4( -34, 118), E2( -88,  88), E4( -78, 104), E2(  12,  12), E2(  22,  22),\
    E2(  42,  42), E2(  72,  72)

#define TAB_2_2 \
    PD(   0,   0), E2(   3,   3), E4(   0,   3), E2(   6,   6), E4(   3,   9),\
    E4(  -3,   9), E2(  -6,   6), E4(   6,  12), E2(  12,  12), E4(   0,  15),\
    E4(  -9,  12), E4(  15,  24), E4(  -6,  18), E4(   6,  24), E2(  24,  24),\
    E4(   0,  27), E2( -18,  18), E4( -12,  24), E4(  15,  39), E4(  27,  42),\
    E4(  -9,  33), E4(   6,  42), E2(  45,  45), E4(  -3,  51), E4( -27,  33),\
    E4( -21,  45), E4(  33,  69), E4(  18,  69), E4(  54,  72), E4( -18,  63),\
    E4(   6,  78), E2(  81,  81), E2( -51,  51), E4( -42,  63), E4(  -9,  90),\
    E4(  42, 114), E4(  63, 117), E4( -36,  81), E4(  21, 120), E4(  96, 123),\
    E4( -30, 111), E4( -78,  93), E4( -69, 114), E2(  18,  18), E2(  33,  33),\
    E2(  63,  63), E2( 108, 108)

#define TAB_2_3 \
    PD(   0,   0), E2(   4,   4), E4(   0,   4), E4(   4,   8), E2(   8,   8),\
    E2(  -8,   8), E4(  -4,  12), E4(   8,  16), E2(  16,  16), E4(   0,  20),\
    E4( -12,  16), E4(  -4,  24), E4(  16,  32), E4(   8,  32), E2(  32,  32),\
    E4(   0,  36), E2( -24,  24), E4( -16,  32), E4(  20,  52), E4(  36,  56),\
    E4( -12,  44), E4(   8,  56), E2(  60,  60), E4(  -4,  64), E4( -36,  44),\
    E4( -28,  60), E4(  44,  92), E4(  24,  92), E4(  72,  96), E4( -20,  84),\
    E4(   8, 100), E2( 108, 108), E2( -68,  68), E4( -56,  84), E4( -12, 120),\
    E4( -48, 108), E4(-104, 124), E2(  24,  24), E2(  44,  44), E2(  84,  84)

#define TAB_2_4 \
    PD(   0,   0), E2(   5,   5), E4(   0,   5), E2(  10,  10), E4(   5,  15),\
    E2( -10,  10), E4(  -5,  15), E4(  10,  20), E2(  20,  20), E4(   0,  25),\
    E4( -15,  20), E4(  25,  40), E4( -10,  30), E4(  10,  40), E2(  40,  40),\
    E4(   0,  45), E2( -30,  30), E4( -20,  40), E4(  25,  65), E4(  45,  70),\
    E4( -15,  55), E4(  10,  70), E2(  75,  75), E4(  -5,  85), E4( -45,  55),\
    E4( -35,  75), E4(  55, 115), E4(  30, 115), E4(  90, 120), E4( -30, 105),\
    E2( -85,  85), E4( -70, 105), E2(  30,  30), E2(  60,  60), E2( 105, 105)

#define TAB_2_5 \
    PD(   0,   0), E2(   6,   6), E4(   0,   6), E2(  12,  12), E4(   6,  12),\
    E2( -12,  12), E4(  -6,  18), E4(  12,  24), E2(  24,  24), E4(   0,  30),\
    E4( -18,  24), E4(  30,  48), E4(  -6,  36), E4(  12,  48), E2(  48,  48),\
    E4(   0,  54), E2( -36,  36), E4( -24,  48), E4(  30,  78), E4(  54,  84),\
    E4( -18,  66), E4(  12,  84), E2(  90,  90), E4(  -6,  96), E4( -54,  66),\
    E4( -42,  90), E4( -30, 126), E2(-102, 102), E4( -84, 126), E2(  36,  36),\
    E2(  66,  66)

#define TAB_2_6 \
    PD(   0,   0), E2(   7,   7), E4(   0,   7), E2(  14,  14), E4(   7,  21),\
    E2( -14,  14), E4(  -7,  21), E4(  14,  28), E2(  28,  28), E4(   0,  35),\
    E4( -21,  28), E4(  35,  56), E4( -14,  42), E4(  14,  56), E2(  56,  56),\
    E4(   0,  63), E2( -42,  42), E4( -28,  56), E4(  35,  91), E4(  63,  98),\
    E4( -21,  77), E4(  14,  98), E2( 105, 105), E4(  -7, 119), E4( -63,  77),\
    E4( -49, 105), E2(-119, 119), E2(  42,  42), E2(  77,  77)

#define TAB_2_7 \
    PD(   0,   0), E2(   8,   8), E4(   0,   8), E2(  16,  16), E4(   8,  16),\
    E2( -16,  16), E4(  -8,  24), E4(  16,  32), E2(  32,  32), E4(   0,  40),\
    E4( -24,  32), E4(  40,  64), E4( -16,  48), E4(  16,  64), E2(  64,  64),\
    E4(   0,  72), E2( -48,  48), E4( -32,  64), E4(  40, 104), E4(  72, 112),\
    E4( -24,  88), E4(  16, 112), E2( 120, 120), E4( -72,  88), E4( -56, 120),\
    E2(  48,  48), E2(  88,  88)

#define TAB_2_8 \
    PD(   0,   0), E2(   9,   9), E4(   0,   9), E2(  18,  18), E4(   9,  27),\
    E2( -18,  18), E4(  -9,  27), E4(  18,  36), E2(  36,  36), E4(   0,  45),\
    E4( -27,  36), E4(  45,  72), E4( -18,  54), E4(  18,  72), E2(  72,  72),\
    E4(   0,  81), E2( -54,  54), E4( -36,  72), E4(  45, 117), E4(  81, 126),\
    E4( -27,  99), E4( -81,  99), E2(  54,  54), E2( 108, 108)

#define TAB_3_1 \
    PD(   0,   0), E2(   2,   2), E4(   0,   3), E2(   6,   6), E4(   0,   7),\
    E2(  -5,   5), E2(   5,  -5), E4(   6,  11), E4(   0,   8), E2(  11,  11),\
    E4(   0,  12), E4(  12,  17), E2(  17,  17), E4(   6,  18), E4(  -8,  11),\
    E4(   0,  15), E4(   0,  20), E4(  18,  25), E4(  11,  25), E2(  25,  25),\
    E2( -14,  14), E2(  14, -14), E4(   0,  26), E4( -11,  18), E4(  -7,  22),\
    E4(  26,  34), E4(  18,  34), E2(  34,  34), E4(  11,  35), E4(   0,  29),\
    E4( -19,  22), E4( -15,  26), E4(   0,  37), E4(  27,  44), E4(  36,  44),\
    E4(  18,  44), E4( -10,  33), E2(  45,  45)

#define TAB_3_2 \
    PD(   0,   0), E4(   0,   2), E2(   2,   2), E2(   6,   6), E4(   0,   6),\
    E2(  -4,   4), E2(  10,  -6), E2(   0, -12), PD(  -6, -12), E2(   6, -12),\
    PD(   6,  12), E2( -14,   0), E2(  12,  12), E2(   0, -18), E2(  14, -12),\
    PD( -18,  -6), E2(  18,  -6), PD(  18,   6), PD( -10, -18), E2(  10, -18),\
    PD(  10,  18), E2( -22,   0), E2(   0, -24), PD( -22, -12), E2(  22, -12),\
    PD(  22,  12), PD(  -8, -24), E2(   8, -24), PD(   8,  24), PD( -26,  -6),\
    E2(  26,  -6), PD(  26,   6), E2( -28,   0), E2(  20,  20), E2( -14, -26),\
    E2( -30, -12), E2( -10, -32), E2( -18, -32), E2( -26, -26), E2( -34, -20),\
    E2( -38, -12), E2( -32, -32), PD(  32,  32), PD( -22, -40), E2( -34, -34)

#define TAB_3_3 \
    PD(   0,   0), E4(   0,   2), E2(   4,   4), E2(  10,  10), E4(   0,  10),\
    E2(  -6,   6), E2(  14,  -8), E2( -18,   0), E2(  10, -16), E2(   0, -24),\
    PD( -24,  -8), E2(  24,  -8), PD(  24,   8), E2(  18,  18), E2(  20, -16),\
    PD( -14, -26), E2(  14, -26), PD(  14,  26), E2( -30,   0), E2(   0, -34),\
    PD( -34,  -8), E2(  34,  -8), PD(  34,   8), PD( -30, -18), E2(  30, -18),\
    PD(  30,  18), PD( -10, -34), E2(  10, -34), PD(  10,  34), E2( -20, -34),\
    E2( -40,   0), E2(  30,  30), E2( -40, -18), E2(   0, -44), E2( -16, -44),\
    PD( -36, -36), E2( -36, -36), E2( -26, -44), E2( -46, -26), E2( -52, -18),\
    PD( -20, -54), E2( -44, -44), PD( -32, -54), PD( -46, -46), E2( -46, -46)

#define TAB_3_4 \
    PD(   0,   0), E4(   0,   4), E2(   4,   4), E2(  12,  12), E4(   0,  12),\
    E2(  -8,   8), E2(   8, -16), E2(   0, -24), PD( -24,  -8), E2(  24,  -8),\
    PD(  24,   8), E2(  20, -16), E2( -28,   0), PD( -16, -24), E2(  16, -24),\
    PD(  16,  24), E2(   0, -32), PD( -28, -16), E2(  28, -16), PD(  28,  16),\
    PD(  -8, -32), PD(   8, -32), PD( -32,  -8), E2(  32,  -8), PD(  32,   8),\
    PD(  -8,  32), PD(   8,  32), E2(  24,  24), E2(  24, -24), E2( -20, -32),\
    E2( -40,   0), E2( -40, -16), PD(   0, -44), PD(   0, -44), E2( -44,   0),\
    PD(   0,  44), PD(   0,  44), E2( -32, -32), E2( -16, -44), PD( -24, -44),\
    E2( -44, -24), PD(  24,  44), E2( -48, -16), PD( -36, -36), E2( -36, -36),\
    PD(  36,  36), PD( -20, -52), E2(  40,  40), PD( -32, -52)

#define TAB_3_5 \
    PD(   0,   0), E2(   2,   2), E2(   6,   6), E2(  12,  12), E2(  20,  20),\
    E2(  32,  32), E2(  46,  46)


/**
 * Pack two delta values (a,b) into one 16bit word
 * according with endianess of the host machine.
 */
#if HAVE_BIGENDIAN
#define PD(a,b) (((a) << 8) + (b))
#else
#define PD(a,b) (((b) << 8) + (a))
#endif

/**
 * Expand a pair of delta values (a,b)
 * into two/four delta entries.
 */
#define E2(a, b) PD(a, b), PD(-a, -b)
#define E4(a, b) PD(a, b), PD(-a, -b), PD(b, a), PD(-b, -a)

/*
 * VQ tables for 4x4 block modes.
 * Let the compiler decompress and build the tables for us.
 */
static const int16_t delta_tab_1_1[195] = { TAB_1_1 };
static const int16_t delta_tab_1_2[159] = { TAB_1_2 };
static const int16_t delta_tab_1_3[133] = { TAB_1_3 };
static const int16_t delta_tab_1_4[115] = { TAB_1_4 };
static const int16_t delta_tab_1_5[101] = { TAB_1_5 };
static const int16_t delta_tab_1_6[93]  = { TAB_1_6 };
static const int16_t delta_tab_1_7[87]  = { TAB_1_7 };
static const int16_t delta_tab_1_8[77]  = { TAB_1_8 };

static const int16_t delta_tab_2_1[195] = { TAB_2_1 };
static const int16_t delta_tab_2_2[159] = { TAB_2_2 };
static const int16_t delta_tab_2_3[133] = { TAB_2_3 };
static const int16_t delta_tab_2_4[115] = { TAB_2_4 };
static const int16_t delta_tab_2_5[101] = { TAB_2_5 };
static const int16_t delta_tab_2_6[93]  = { TAB_2_6 };
static const int16_t delta_tab_2_7[87]  = { TAB_2_7 };
static const int16_t delta_tab_2_8[77]  = { TAB_2_8 };

static const int16_t delta_tab_3_1[128] = { TAB_3_1 };
static const int16_t delta_tab_3_2[79]  = { TAB_3_2 };
static const int16_t delta_tab_3_3[79]  = { TAB_3_3 };
static const int16_t delta_tab_3_4[79]  = { TAB_3_4 };
static const int16_t delta_tab_3_5[79]  = { TAB_3_5 };

#undef PD

/**
 * Pack four delta values (a,a,b,b) into one 32bit word
 * according with endianess of the host machine.
 */
#if HAVE_BIGENDIAN
#define PD(a,b) (((a) << 24) + ((a) << 16) + ((b) << 8) + (b))
#else
#define PD(a,b) (((b) << 24) + ((b) << 16) + ((a) << 8) + (a))
#endif

/*
 * VQ tables for 8x8 block modes.
 * Those are based on the same delta tables by using
 * each value twice: ABCD --> AABBCCDD.
 */
static const int32_t delta_tab_1_1_m10[195] = { TAB_1_1 };
static const int32_t delta_tab_1_2_m10[159] = { TAB_1_2 };
static const int32_t delta_tab_1_3_m10[133] = { TAB_1_3 };
static const int32_t delta_tab_1_4_m10[115] = { TAB_1_4 };
static const int32_t delta_tab_1_5_m10[101] = { TAB_1_5 };
static const int32_t delta_tab_1_6_m10[93]  = { TAB_1_6 };
static const int32_t delta_tab_1_7_m10[87]  = { TAB_1_7 };
static const int32_t delta_tab_1_8_m10[77]  = { TAB_1_8 };

static const int32_t delta_tab_2_1_m10[195] = { TAB_2_1 };
static const int32_t delta_tab_2_2_m10[159] = { TAB_2_2 };
static const int32_t delta_tab_2_3_m10[133] = { TAB_2_3 };
static const int32_t delta_tab_2_4_m10[115] = { TAB_2_4 };
static const int32_t delta_tab_2_5_m10[101] = { TAB_2_5 };
static const int32_t delta_tab_2_6_m10[93]  = { TAB_2_6 };
static const int32_t delta_tab_2_7_m10[87]  = { TAB_2_7 };
static const int32_t delta_tab_2_8_m10[77]  = { TAB_2_8 };

static const int32_t delta_tab_3_1_m10[128] = { TAB_3_1 };
static const int32_t delta_tab_3_2_m10[79]  = { TAB_3_2 };
static const int32_t delta_tab_3_3_m10[79]  = { TAB_3_3 };
static const int32_t delta_tab_3_4_m10[79]  = { TAB_3_4 };
static const int32_t delta_tab_3_5_m10[79]  = { TAB_3_5 };


typedef struct {
    const int16_t  *deltas;     ///< delta tables for 4x4 block modes
    const int32_t  *deltas_m10; ///< delta tables for 8x8 block modes
    uint8_t        num_dyads;   ///< number of two-pixel deltas
    uint8_t        quad_exp;    ///< log2 of four-pixel deltas
} vqEntry;

static const vqEntry vq_tab[24] = {
    /* set 1 */
    { delta_tab_1_1, delta_tab_1_1_m10, 195,  7 },
    { delta_tab_1_2, delta_tab_1_2_m10, 159,  9 },
    { delta_tab_1_3, delta_tab_1_3_m10, 133, 10 },
    { delta_tab_1_4, delta_tab_1_4_m10, 115, 11 },
    { delta_tab_1_5, delta_tab_1_5_m10, 101, 12 },
    { delta_tab_1_6, delta_tab_1_6_m10,  93, 12 },
    { delta_tab_1_7, delta_tab_1_7_m10,  87, 12 },
    { delta_tab_1_8, delta_tab_1_8_m10,  77, 13 },

    /* set 2 */
    { delta_tab_2_1, delta_tab_2_1_m10, 195,  7 },
    { delta_tab_2_2, delta_tab_2_2_m10, 159,  9 },
    { delta_tab_2_3, delta_tab_2_3_m10, 133, 10 },
    { delta_tab_2_4, delta_tab_2_4_m10, 115, 11 },
    { delta_tab_2_5, delta_tab_2_5_m10, 101, 12 },
    { delta_tab_2_6, delta_tab_2_6_m10,  93, 12 },
    { delta_tab_2_7, delta_tab_2_7_m10,  87, 12 },
    { delta_tab_2_8, delta_tab_2_8_m10,  77, 13 },

    /* set 3 */
    { delta_tab_3_1, delta_tab_3_1_m10, 128, 11 },
    { delta_tab_3_2, delta_tab_3_2_m10,  79, 13 },
    { delta_tab_3_3, delta_tab_3_3_m10,  79, 13 },
    { delta_tab_3_4, delta_tab_3_4_m10,  79, 13 },
    { delta_tab_3_5, delta_tab_3_5_m10,  79, 13 },
    { delta_tab_3_5, delta_tab_3_5_m10,  79, 13 },
    { delta_tab_3_5, delta_tab_3_5_m10,  79, 13 },
    { delta_tab_3_5, delta_tab_3_5_m10,  79, 13 }
};

#endif /* AVCODEC_INDEO3DATA_H */
_______________________________________________
libav-devel mailing list
[email protected]
https://lists.libav.org/mailman/listinfo/libav-devel

Reply via email to