On Thu, Jun 12, 2014 at 6:24 PM, Ataollah Mesgarnejad
<ames...@tigers.lsu.edu> wrote:
> Dear all,
>
> When I try to load a series of nemesis mesh files that I created by:
>
> Mesh mesh(init.comm(), dim);
>
> mesh.read(in_file);
>
> Nemesis_IO(mesh).write(out_file);
>
>
> using my code (when compiled with libMesh that has parmesh enabled) I get
> the following error:
>
> Error reading node cmap node and processor ids!
> ../../src/mesh/nemesis_io_helper.C, line 376, compiled Jun 11 2014 at
> 10:01:19
>
>
> I was wondering if anyone encountered anything similar or had an idea about
> what might be going wrong?

I'm guessing there is a problem with your "in_file", since Nemesis_IO
does seem to be able to write, read, and write again a mesh generated
via MeshTools::Generation::build_square, see test code below.

-- 
John


// This test code uses the NemesisIO::write() function followed by the
// NemesisIO::read() function to test that we can read the files we've
// written back in.
#include <iostream>

#include "libmesh/libmesh.h"
#include "libmesh/parallel_mesh.h"
#include "libmesh/nemesis_io.h"
#include "libmesh/mesh_generation.h"

using namespace libMesh;

int main (int argc, char** argv)
{
  LibMeshInit init(argc, argv);
  {
    // Must run this util in parallel:
    if (global_n_processors() != 2)
      libmesh_error_msg("Run this test on two processors!");

    // Construct+Write step
    {
      ParallelMesh mesh;
      MeshTools::Generation::build_square (mesh, 10, 10, 0., 1, 0., 1, QUAD4);
      Nemesis_IO writer(mesh);
      writer.write("nemesis_read_write.e");
    }

    // Read+Write step
    {
      ParallelMesh mesh;

      {
        Nemesis_IO reader(mesh);
        reader.read("nemesis_read_write.e");
      }

      {
        Nemesis_IO writer(mesh);
        writer.write("nemesis_read_write_2nd.e");
      }
    }
  }

  return 0;
}

------------------------------------------------------------------------------
HPCC Systems Open Source Big Data Platform from LexisNexis Risk Solutions
Find What Matters Most in Your Big Data with HPCC Systems
Open Source. Fast. Scalable. Simple. Ideal for Dirty Data.
Leverages Graph Analysis for Fast Processing & Easy Data Exploration
http://p.sf.net/sfu/hpccsystems
_______________________________________________
Libmesh-users mailing list
Libmesh-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/libmesh-users

Reply via email to