This is an update to the previously posted series at: https://lkml.org/lkml/2015/6/24/665
Dave Watson has posted a similar follow-up which allows additional critical regions to be registered as well as single-step support at: https://lkml.org/lkml/2015/10/22/588 This series is a new approach which introduces an alternate ABI that does not depend on open-coded assembly nor a central 'repository' of rseq sequences. Sequences may now be inlined and the preparatory[*] work for the sequence can be written in a higher level language. This new ABI has also been written to support debugger interaction in a way that the previous ABI could not. [*] A sequence essentially has 3 steps: 1) Determine which cpu the sequence is being run on 2) Preparatory work specific to the state read in 1) 3) A single commit instruction which finalizes any state updates. We require a single instruction for (3) so that if it is interrupted in any way, we can proceed from (1) once more [or potentially bail]. This new ABI can be described as: Progress is ordered as follows: *0. Userspace stores current event+cpu counter values 1. Userspace loads the rip to move to at failure into cx 2. Userspace loads the rip of the instruction following the critical section into a registered TLS address. 3. Userspace loads the values read at [0] into a known location. 4. Userspace tests to see whether the current event and cpu counter values match those stored at 0. Manually jumping to the address from [1] in the case of a mismatch. Note that if we are preempted or otherwise interrupted then the kernel can also now perform this comparison and conditionally jump us to [1]. 5. Our final instruction before [2] is then our commit. The critical section is self-terminating. [2] must also be cleared at this point. For x86_64: [3] uses rdx to represent cpu and event counter as a single 64-bit value. For i386: [3] uses ax for cpu and dx for the event_counter. Both: Instruction after commit: rseq_state->post_commit_instr Current event and cpu state: rseq_state->event_and_cpu Exactly, for x86_64 this looks like: movq <failed>, rcx [1] movq $1f, <commit_instr> [2] cmpq <start value>, <current value> [3] (start is in rcx) jnz <failed> (4) movq <to_write>, (<target>) (5) 1: movq $0, <commit_instr> There has been some related discussion, which I am supportive of, in which we use fs/gs instead of TLS. This maps naturally to the above and removes the current requirement for per-thread initialization (this is a good thing!). On debugger interactions: There are some nice properties about this new style of API which allow it to actually support safe interactions with a debugger: a) The event counter is a per-cpu value. This means that we can not advance it if no threads from the same process execute on that cpu. This naturally allows basic single step support with thread-isolation. b) Single-step can be augmented to evalute the ABI without incrementing the event count. c) A debugger can also be augmented to evaluate this ABI and push restarts on the kernel's behalf. This is also compatible with David's approach of not single stepping between 2-4 above. However, I think these are ultimately a little stronger since true single-stepping and breakpoint support would be available. Which would be nice to allow actual debugging of sequences. (Note that I haven't bothered implementing these in the current patchset as we are still winnowing down on the ABI and they just add complexity. It's important to note that they are possible however.) Thanks, - Paul -- To unsubscribe from this list: send the line "unsubscribe linux-api" in the body of a message to majord...@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html