Signed-off-by: Kent Overstreet <koverstr...@google.com>
---
 drivers/md/bcache/alloc.c   |  615 +++++++++++++++++++
 drivers/md/bcache/io.c      |  136 +++++
 drivers/md/bcache/request.c | 1366 +++++++++++++++++++++++++++++++++++++++++++
 drivers/md/bcache/request.h |   61 ++
 4 files changed, 2178 insertions(+), 0 deletions(-)
 create mode 100644 drivers/md/bcache/alloc.c
 create mode 100644 drivers/md/bcache/io.c
 create mode 100644 drivers/md/bcache/request.c
 create mode 100644 drivers/md/bcache/request.h

diff --git a/drivers/md/bcache/alloc.c b/drivers/md/bcache/alloc.c
new file mode 100644
index 0000000..6a5fb0d
--- /dev/null
+++ b/drivers/md/bcache/alloc.c
@@ -0,0 +1,615 @@
+
+#include "bcache.h"
+#include "btree.h"
+
+#include <linux/random.h>
+
+/*
+ * Allocation in bcache is done in terms of buckets:
+ *
+ * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
+ * btree pointers - they must match for the pointer to be considered valid.
+ *
+ * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
+ * bucket simply by incrementing its gen.
+ *
+ * The gens (along with the priorities; it's really the gens are important but
+ * the code is named as if it's the priorities) are written in an arbitrary 
list
+ * of buckets on disk, with a pointer to them in the journal header.
+ *
+ * When we invalidate a bucket, we have to write its new gen to disk and wait
+ * for that write to complete before we use it - otherwise after a crash we
+ * could have pointers that appeared to be good but pointed to data that had
+ * been overwritten.
+ *
+ * Since the gens and priorities are all stored contiguously on disk, we can
+ * batch this up: We fill up the free_inc list with freshly invalidated 
buckets,
+ * call prio_write() - and when prio_write() eventually finishes it toggles
+ * c->prio_written and the buckets in free_inc are now ready to be used. When
+ * the free_inc list empties, we toggle c->prio_written and the cycle repeats.
+ *
+ * free_inc isn't the only freelist - if it was, we'd often to sleep while
+ * priorities and gens were being written before we could allocate. c->free is 
a
+ * smaller freelist, and buckets on that list are always ready to be used.
+ *
+ * If we've got discards enabled, that happens when a bucket moves from the
+ * free_inc list to the free list.
+ *
+ * There is another freelist, because sometimes we have buckets that we know
+ * have nothing pointing into them - these we can reuse without waiting for
+ * priorities to be rewritten. These come from freed btree nodes and buckets
+ * that garbage collection discovered no longer had valid keys pointing into
+ * them (because they were overwritten). That's the unused list - buckets on 
the
+ * unused list move to the free list, optionally being discarded in the 
process.
+ *
+ * It's also important to ensure that gens don't wrap around - with respect to
+ * either the oldest gen in the btree or the gen on disk. This is quite
+ * difficult to do in practice, but we explicitly guard against it anyways - if
+ * a bucket is in danger of wrapping around we simply skip invalidating it that
+ * time around, and we garbage collect or rewrite the priorities sooner than we
+ * would have otherwise.
+ *
+ * bch_bucket_alloc() allocates a single bucket from a specific cache.
+ *
+ * bch_bucket_alloc_set() allocates one or more buckets from different caches
+ * out of a cache set.
+ *
+ * free_some_buckets() drives all the processes described above. It's called
+ * from bch_bucket_alloc() and a few other places that need to make sure free
+ * buckets are ready.
+ *
+ * invalidate_buckets_(lru|fifo)() find buckets that are available to be
+ * invalidated, and then invalidate them and stick them on the free_inc list -
+ * in either lru or fifo order.
+ */
+
+#define MAX_IN_FLIGHT_DISCARDS         8
+
+static void do_discard(struct cache *);
+
+/* Bucket heap / gen */
+
+uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
+{
+       uint8_t ret = ++b->gen;
+
+       ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
+       WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
+
+       if (CACHE_SYNC(&ca->set->sb)) {
+               ca->need_save_prio = max(ca->need_save_prio, 
bucket_disk_gen(b));
+               WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX);
+       }
+
+       return ret;
+}
+
+void bch_rescale_priorities(struct cache_set *c, int sectors)
+{
+       struct cache *ca;
+       struct bucket *b;
+       unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
+       int r;
+
+       atomic_sub(sectors, &c->rescale);
+
+       do {
+               r = atomic_read(&c->rescale);
+
+               if (r >= 0)
+                       return;
+       } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
+
+       mutex_lock(&c->bucket_lock);
+
+       c->min_prio = USHRT_MAX;
+
+       for_each_cache(ca, c)
+               for_each_bucket(b, ca)
+                       if (b->prio &&
+                           b->prio != BTREE_PRIO &&
+                           !atomic_read(&b->pin)) {
+                               b->prio--;
+                               c->min_prio = min(c->min_prio, b->prio);
+                       }
+
+       mutex_unlock(&c->bucket_lock);
+}
+
+static long pop_freed(struct cache *ca)
+{
+       long r;
+
+       if ((!CACHE_SYNC(&ca->set->sb) ||
+            !atomic_read(&ca->set->prio_blocked)) &&
+           fifo_pop(&ca->unused, r))
+               return r;
+
+       if ((!CACHE_SYNC(&ca->set->sb) ||
+            atomic_read(&ca->prio_written) > 0) &&
+           fifo_pop(&ca->free_inc, r))
+               return r;
+
+       return -1;
+}
+
+/* Discard/TRIM */
+
+struct discard {
+       struct list_head        list;
+       struct work_struct      work;
+       struct cache            *ca;
+       long                    bucket;
+
+       struct bio              bio;
+       struct bio_vec          bv;
+};
+
+static void discard_finish(struct work_struct *w)
+{
+       struct discard *d = container_of(w, struct discard, work);
+       struct cache *ca = d->ca;
+       char buf[BDEVNAME_SIZE];
+       bool run = false;
+
+       if (!test_bit(BIO_UPTODATE, &d->bio.bi_flags)) {
+               printk(KERN_NOTICE "bcache: discard error on %s, disabling\n",
+                      bdevname(ca->bdev, buf));
+               d->ca->discard = 0;
+       }
+
+       mutex_lock(&ca->set->bucket_lock);
+       if (fifo_empty(&ca->free) ||
+           fifo_used(&ca->free) == 8)
+               run = true;
+
+       fifo_push(&ca->free, d->bucket);
+
+       list_add(&d->list, &ca->discards);
+
+       do_discard(ca);
+       mutex_unlock(&ca->set->bucket_lock);
+
+       if (run)
+               closure_wake_up(&ca->set->bucket_wait);
+
+       closure_put(&ca->set->cl);
+}
+
+static void discard_endio(struct bio *bio, int error)
+{
+       struct discard *d = container_of(bio, struct discard, bio);
+
+       PREPARE_WORK(&d->work, discard_finish);
+       schedule_work(&d->work);
+}
+
+static void discard_work(struct work_struct *w)
+{
+       struct discard *d = container_of(w, struct discard, work);
+       submit_bio(0, &d->bio);
+}
+
+static void do_discard(struct cache *ca)
+{
+       struct request_queue *q = bdev_get_queue(ca->bdev);
+       int s = q->limits.logical_block_size;
+
+       lockdep_assert_held(&ca->set->bucket_lock);
+
+       while (ca->discard &&
+              !atomic_read(&ca->set->closing) &&
+              !list_empty(&ca->discards) &&
+              fifo_free(&ca->free) >= MAX_IN_FLIGHT_DISCARDS) {
+               struct discard *d = list_first_entry(&ca->discards,
+                                                    struct discard, list);
+
+               d->bucket = pop_freed(ca);
+               if (d->bucket == -1)
+                       break;
+
+               list_del(&d->list);
+               closure_get(&ca->set->cl);
+
+               bio_init(&d->bio);
+               memset(&d->bv, 0, sizeof(struct bio_vec));
+               bio_set_prio(&d->bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
+
+               d->bio.bi_sector        = bucket_to_sector(ca->set, d->bucket);
+               d->bio.bi_bdev          = ca->bdev;
+               d->bio.bi_rw            = REQ_WRITE|REQ_DISCARD;
+               d->bio.bi_max_vecs      = 1;
+               d->bio.bi_io_vec        = d->bio.bi_inline_vecs;
+               d->bio.bi_end_io        = discard_endio;
+
+               if (bio_add_pc_page(q, &d->bio, ca->discard_page, s, 0) < s) {
+                       printk(KERN_DEBUG "bcache: bio_add_pc_page failed\n");
+                       ca->discard = 0;
+                       fifo_push(&ca->free, d->bucket);
+                       list_add(&d->list, &ca->discards);
+                       break;
+               }
+
+               d->bio.bi_size = bucket_bytes(ca);
+
+               schedule_work(&d->work);
+       }
+}
+
+void bch_free_discards(struct cache *ca)
+{
+       struct discard *d;
+
+       while (!list_empty(&ca->discards)) {
+               d = list_first_entry(&ca->discards, struct discard, list);
+               cancel_work_sync(&d->work);
+               list_del(&d->list);
+               kfree(d);
+       }
+}
+
+int bch_alloc_discards(struct cache *ca)
+{
+       for (int i = 0; i < MAX_IN_FLIGHT_DISCARDS; i++) {
+               struct discard *d = kzalloc(sizeof(*d), GFP_KERNEL);
+               if (!d)
+                       return -ENOMEM;
+
+               d->ca = ca;
+               INIT_WORK(&d->work, discard_work);
+               list_add(&d->list, &ca->discards);
+       }
+
+       return 0;
+}
+
+/* Allocation */
+
+static inline bool can_inc_bucket_gen(struct bucket *b)
+{
+       return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX &&
+               bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX;
+}
+
+bool bch_bucket_add_unused(struct cache *ca, struct bucket *b)
+{
+       BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b));
+
+       if (ca->prio_alloc == prio_buckets(ca) &&
+           CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO)
+               return false;
+
+       b->prio = 0;
+
+       if (can_inc_bucket_gen(b) &&
+           fifo_push(&ca->unused, b - ca->buckets)) {
+               atomic_inc(&b->pin);
+               return true;
+       }
+
+       return false;
+}
+
+static bool can_invalidate_bucket(struct cache *ca, struct bucket *b)
+{
+       return GC_MARK(b) == GC_MARK_RECLAIMABLE &&
+               !atomic_read(&b->pin) &&
+               can_inc_bucket_gen(b);
+}
+
+static void invalidate_one_bucket(struct cache *ca, struct bucket *b)
+{
+       bch_inc_gen(ca, b);
+       b->prio = INITIAL_PRIO;
+       atomic_inc(&b->pin);
+       fifo_push(&ca->free_inc, b - ca->buckets);
+}
+
+static void invalidate_buckets_lru(struct cache *ca)
+{
+       unsigned bucket_prio(struct bucket *b)
+       {
+               return ((unsigned) (b->prio - ca->set->min_prio)) *
+                       GC_SECTORS_USED(b);
+       }
+
+       bool bucket_max_cmp(struct bucket *l, struct bucket *r)
+       {
+               return bucket_prio(l) < bucket_prio(r);
+       }
+
+       bool bucket_min_cmp(struct bucket *l, struct bucket *r)
+       {
+               return bucket_prio(l) > bucket_prio(r);
+       }
+
+       struct bucket *b;
+
+       ca->heap.used = 0;
+
+       for_each_bucket(b, ca) {
+               if (!can_invalidate_bucket(ca, b))
+                       continue;
+
+               if (!GC_SECTORS_USED(b)) {
+                       if (!bch_bucket_add_unused(ca, b))
+                               return;
+               } else {
+                       if (!heap_full(&ca->heap))
+                               heap_add(&ca->heap, b, bucket_max_cmp);
+                       else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
+                               ca->heap.data[0] = b;
+                               heap_sift(&ca->heap, 0, bucket_max_cmp);
+                       }
+               }
+       }
+
+       if (ca->heap.used * 2 < ca->heap.size)
+               bch_queue_gc(ca->set);
+
+       for (ssize_t i = ca->heap.used / 2 - 1; i >= 0; --i)
+               heap_sift(&ca->heap, i, bucket_min_cmp);
+
+       while (!fifo_full(&ca->free_inc)) {
+               if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
+                       /* We don't want to be calling invalidate_buckets()
+                        * multiple times when it can't do anything
+                        */
+                       ca->invalidate_needs_gc = 1;
+                       bch_queue_gc(ca->set);
+                       return;
+               }
+
+               invalidate_one_bucket(ca, b);
+       }
+}
+
+static void invalidate_buckets_fifo(struct cache *ca)
+{
+       struct bucket *b;
+       size_t checked = 0;
+
+       while (!fifo_full(&ca->free_inc)) {
+               if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
+                   ca->fifo_last_bucket >= ca->sb.nbuckets)
+                       ca->fifo_last_bucket = ca->sb.first_bucket;
+
+               b = ca->buckets + ca->fifo_last_bucket++;
+
+               if (can_invalidate_bucket(ca, b))
+                       invalidate_one_bucket(ca, b);
+
+               if (++checked >= ca->sb.nbuckets) {
+                       ca->invalidate_needs_gc = 1;
+                       bch_queue_gc(ca->set);
+                       return;
+               }
+       }
+}
+
+static void invalidate_buckets_random(struct cache *ca)
+{
+       struct bucket *b;
+       size_t checked = 0;
+
+       while (!fifo_full(&ca->free_inc)) {
+               size_t n;
+               get_random_bytes(&n, sizeof(n));
+
+               n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
+               n += ca->sb.first_bucket;
+
+               b = ca->buckets + n;
+
+               if (can_invalidate_bucket(ca, b))
+                       invalidate_one_bucket(ca, b);
+
+               if (++checked >= ca->sb.nbuckets / 2) {
+                       ca->invalidate_needs_gc = 1;
+                       bch_queue_gc(ca->set);
+                       return;
+               }
+       }
+}
+
+static void invalidate_buckets(struct cache *ca)
+{
+       /* free_some_buckets() may just need to write priorities to keep gens
+        * from wrapping around
+        */
+       if (!ca->set->gc_mark_valid ||
+           ca->invalidate_needs_gc)
+               return;
+
+       switch (CACHE_REPLACEMENT(&ca->sb)) {
+       case CACHE_REPLACEMENT_LRU:
+               invalidate_buckets_lru(ca);
+               break;
+       case CACHE_REPLACEMENT_FIFO:
+               invalidate_buckets_fifo(ca);
+               break;
+       case CACHE_REPLACEMENT_RANDOM:
+               invalidate_buckets_random(ca);
+               break;
+       }
+}
+
+bool bch_can_save_prios(struct cache *ca)
+{
+       return ((ca->need_save_prio > 64 ||
+                (ca->set->gc_mark_valid &&
+                 !ca->invalidate_needs_gc)) &&
+               !atomic_read(&ca->prio_written) &&
+               !atomic_read(&ca->set->prio_blocked));
+}
+
+void bch_free_some_buckets(struct cache *ca)
+{
+       long r;
+       lockdep_assert_held(&ca->set->bucket_lock);
+
+       /*
+        * XXX: do_discard(), prio_write() take refcounts on the cache set.  How
+        * do we know that refcount is nonzero?
+        */
+
+       if (ca->discard)
+               do_discard(ca);
+       else
+               while (!fifo_full(&ca->free) &&
+                      (r = pop_freed(ca)) != -1)
+                       fifo_push(&ca->free, r);
+
+       while (ca->prio_alloc != prio_buckets(ca) &&
+              fifo_pop(&ca->free, r)) {
+               struct bucket *b = ca->buckets + r;
+               ca->prio_next[ca->prio_alloc++] = r;
+
+               SET_GC_MARK(b, GC_MARK_BTREE);
+               atomic_dec_bug(&b->pin);
+       }
+
+       if (!CACHE_SYNC(&ca->set->sb)) {
+               if (fifo_empty(&ca->free_inc))
+                       invalidate_buckets(ca);
+               return;
+       }
+
+       /* XXX: tracepoint for when c->need_save_prio > 64 */
+
+       if (ca->need_save_prio <= 64 &&
+           fifo_used(&ca->unused) > ca->unused.size / 2)
+               return;
+
+       if (atomic_read(&ca->prio_written) > 0 &&
+           (fifo_empty(&ca->free_inc) ||
+            ca->need_save_prio > 64))
+               atomic_set(&ca->prio_written, 0);
+
+       if (!bch_can_save_prios(ca))
+               return;
+
+       invalidate_buckets(ca);
+
+       if (!fifo_empty(&ca->free_inc) ||
+           ca->need_save_prio > 64)
+               bch_prio_write(ca);
+}
+
+static long bch_bucket_alloc(struct cache *ca, int mark,
+                            uint16_t write_prio, struct closure *cl)
+{
+       long r = -1;
+       unsigned watermark;
+
+       if (mark == GC_MARK_BTREE)
+               watermark = 0;
+       else if (write_prio)
+               watermark = 8;
+       else
+               watermark = ca->free.size / 2;
+
+again:
+       bch_free_some_buckets(ca);
+
+       if (fifo_used(&ca->free) > watermark &&
+           fifo_pop(&ca->free, r)) {
+               struct bucket *b = ca->buckets + r;
+#ifdef CONFIG_BCACHE_EDEBUG
+               long i;
+               for (unsigned j = 0; j < prio_buckets(ca); j++)
+                       BUG_ON(ca->prio_buckets[j] == (uint64_t) r);
+               for (unsigned j = 0; j < ca->prio_alloc; j++)
+                       BUG_ON(ca->prio_next[j] == (uint64_t) r);
+
+               fifo_for_each(i, &ca->free)
+                       BUG_ON(i == r);
+               fifo_for_each(i, &ca->free_inc)
+                       BUG_ON(i == r);
+               fifo_for_each(i, &ca->unused)
+                       BUG_ON(i == r);
+#endif
+               BUG_ON(atomic_read(&b->pin) != 1);
+
+               SET_GC_MARK(b, mark);
+               SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
+               b->prio         = (mark == GC_MARK_BTREE)
+                       ? BTREE_PRIO : INITIAL_PRIO;
+
+               return r;
+       }
+
+       pr_debug("no free buckets, prio_written %i, blocked %i, "
+                "free %zu, free_inc %zu, unused %zu",
+                atomic_read(&ca->prio_written),
+                atomic_read(&ca->set->prio_blocked), fifo_used(&ca->free),
+                fifo_used(&ca->free_inc), fifo_used(&ca->unused));
+
+       if (cl) {
+               if (closure_blocking(cl))
+                       mutex_unlock(&ca->set->bucket_lock);
+
+               closure_wait_event(&ca->set->bucket_wait, cl,
+                                  atomic_read(&ca->prio_written) > 0 ||
+                                  bch_can_save_prios(ca));
+
+               if (closure_blocking(cl)) {
+                       mutex_lock(&ca->set->bucket_lock);
+                       goto again;
+               }
+       }
+
+       return -1;
+}
+
+void bch_bucket_free(struct cache_set *c, struct bkey *k)
+{
+       for (unsigned i = 0; i < KEY_PTRS(k); i++) {
+               struct bucket *b = PTR_BUCKET(c, k, i);
+
+               SET_GC_MARK(b, 0);
+               SET_GC_SECTORS_USED(b, 0);
+               bch_bucket_add_unused(PTR_CACHE(c, k, i), b);
+       }
+}
+
+int __bch_bucket_alloc_set(struct cache_set *c, int mark, uint16_t write_prio,
+                          struct bkey *k, int n, struct closure *cl)
+{
+       lockdep_assert_held(&c->bucket_lock);
+       BUG_ON(!n || n > c->caches_loaded || n > 8);
+
+       bkey_init(k);
+
+       /* sort by free space/prio of oldest data in caches */
+
+       for (int i = 0; i < n; i++) {
+               struct cache *ca = c->cache_by_alloc[i];
+               long b = bch_bucket_alloc(ca, mark, write_prio, cl);
+
+               if (b == -1)
+                       goto err;
+
+               k->ptr[i] = PTR(ca->buckets[b].gen,
+                               bucket_to_sector(c, b),
+                               ca->sb.nr_this_dev);
+
+               SET_KEY_PTRS(k, i + 1);
+       }
+
+       return 0;
+err:
+       bch_bucket_free(c, k);
+       __bkey_put(c, k);
+       return -1;
+}
+
+int bch_bucket_alloc_set(struct cache_set *c, int mark, uint16_t write_prio,
+                        struct bkey *k, int n, struct closure *cl)
+{
+       int ret;
+       mutex_lock(&c->bucket_lock);
+       ret = __bch_bucket_alloc_set(c, mark, write_prio, k, n, cl);
+       mutex_unlock(&c->bucket_lock);
+       return ret;
+}
diff --git a/drivers/md/bcache/io.c b/drivers/md/bcache/io.c
new file mode 100644
index 0000000..4202304
--- /dev/null
+++ b/drivers/md/bcache/io.c
@@ -0,0 +1,136 @@
+
+#include "bcache.h"
+#include "bset.h"
+#include "debug.h"
+
+/* Bios with headers */
+
+void bch_bbio_free(struct bio *bio, struct cache_set *c)
+{
+       struct bbio *b = container_of(bio, struct bbio, bio);
+       mempool_free(b, c->bio_meta);
+}
+
+struct bio *bch_bbio_alloc(struct cache_set *c)
+{
+       struct bbio *b = mempool_alloc(c->bio_meta, GFP_NOIO);
+       struct bio *bio = &b->bio;
+
+       bio_init(bio);
+       bio->bi_flags           |= BIO_POOL_NONE << BIO_POOL_OFFSET;
+       bio->bi_max_vecs         = bucket_pages(c);
+       bio->bi_io_vec           = bio->bi_inline_vecs;
+
+       return bio;
+}
+
+void __bch_submit_bbio(struct bio *bio, struct cache_set *c)
+{
+       struct bbio *b = container_of(bio, struct bbio, bio);
+
+       bio->bi_sector  = PTR_OFFSET(&b->key, 0);
+       bio->bi_bdev    = PTR_CACHE(c, &b->key, 0)->bdev;
+
+       b->submit_time_us = local_clock_us();
+       closure_bio_submit(bio, bio->bi_private);
+}
+
+void bch_submit_bbio(struct bio *bio, struct cache_set *c,
+                    struct bkey *k, unsigned ptr)
+{
+       struct bbio *b = container_of(bio, struct bbio, bio);
+       bch_bkey_copy_single_ptr(&b->key, k, ptr);
+       __bch_submit_bbio(bio, c);
+}
+
+/* IO errors */
+
+void bch_count_io_errors(struct cache *ca, int error, const char *m)
+{
+       /*
+        * The halflife of an error is:
+        * log2(1/2)/log2(127/128) * refresh ~= 88 * refresh
+        */
+
+       if (ca->set->error_decay) {
+               unsigned count = atomic_inc_return(&ca->io_count);
+
+               while (count > ca->set->error_decay) {
+                       unsigned errors;
+                       unsigned old = count;
+                       unsigned new = count - ca->set->error_decay;
+
+                       /*
+                        * First we subtract refresh from count; each time we
+                        * succesfully do so, we rescale the errors once:
+                        */
+
+                       count = atomic_cmpxchg(&ca->io_count, old, new);
+
+                       if (count == old) {
+                               count = new;
+
+                               errors = atomic_read(&ca->io_errors);
+                               do {
+                                       old = errors;
+                                       new = ((uint64_t) errors * 127) / 128;
+                                       errors = atomic_cmpxchg(&ca->io_errors,
+                                                               old, new);
+                               } while (old != errors);
+                       }
+               }
+       }
+
+       if (error) {
+               char buf[BDEVNAME_SIZE];
+               unsigned errors = atomic_add_return(1 << IO_ERROR_SHIFT,
+                                                   &ca->io_errors);
+               errors >>= IO_ERROR_SHIFT;
+
+               if (errors < ca->set->error_limit)
+                       err_printk("%s: IO error on %s, recovering\n",
+                                  bdevname(ca->bdev, buf), m);
+               else
+                       bch_cache_set_error(ca->set, "%s: too many IO errors 
%s",
+                                           bdevname(ca->bdev, buf), m);
+       }
+}
+
+void bch_bbio_count_io_errors(struct cache_set *c, struct bio *bio,
+                             int error, const char *m)
+{
+       struct bbio *b = container_of(bio, struct bbio, bio);
+       struct cache *ca = PTR_CACHE(c, &b->key, 0);
+
+       unsigned threshold = bio->bi_rw & REQ_WRITE
+               ? c->congested_write_threshold_us
+               : c->congested_read_threshold_us;
+
+       if (threshold) {
+               unsigned t = local_clock_us();
+
+               int us = t - b->submit_time_us;
+               int congested = atomic_read(&c->congested);
+
+               if (us > (int) threshold) {
+                       int ms = us / 1024;
+                       c->congested_last_us = t;
+
+                       ms = min(ms, CONGESTED_MAX + congested);
+                       atomic_sub(ms, &c->congested);
+               } else if (congested < 0)
+                       atomic_inc(&c->congested);
+       }
+
+       bch_count_io_errors(ca, error, m);
+}
+
+void bch_bbio_endio(struct cache_set *c, struct bio *bio,
+                   int error, const char *m)
+{
+       struct closure *cl = bio->bi_private;
+
+       bch_bbio_count_io_errors(c, bio, error, m);
+       bio_put(bio);
+       closure_put(cl);
+}
diff --git a/drivers/md/bcache/request.c b/drivers/md/bcache/request.c
new file mode 100644
index 0000000..9d37b03
--- /dev/null
+++ b/drivers/md/bcache/request.c
@@ -0,0 +1,1366 @@
+
+#include "bcache.h"
+#include "btree.h"
+#include "debug.h"
+#include "request.h"
+
+#include <linux/cgroup.h>
+#include <linux/module.h>
+#include <linux/hash.h>
+#include <linux/random.h>
+#include "blk-cgroup.h"
+
+#include <trace/events/bcache.h>
+
+#define CUTOFF_CACHE_ADD       95
+#define CUTOFF_CACHE_READA     90
+#define CUTOFF_WRITEBACK       50
+#define CUTOFF_WRITEBACK_SYNC  75
+
+struct kmem_cache *bch_search_cache;
+
+static void check_should_skip(struct cached_dev *, struct search *);
+
+/* Cgroup interface */
+
+#ifdef CONFIG_CGROUP_BCACHE
+static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
+
+static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
+{
+       struct cgroup_subsys_state *css;
+       return cgroup &&
+               (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
+               ? container_of(css, struct bch_cgroup, css)
+               : &bcache_default_cgroup;
+}
+
+struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
+{
+       struct cgroup_subsys_state *css = bio->bi_css
+               ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
+               : task_subsys_state(current, bcache_subsys_id);
+
+       return css
+               ? container_of(css, struct bch_cgroup, css)
+               : &bcache_default_cgroup;
+}
+
+static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
+                       struct file *file,
+                       char __user *buf, size_t nbytes, loff_t *ppos)
+{
+       char tmp[1024];
+       int len = snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
+                                     cgroup_to_bcache(cgrp)->cache_mode + 1);
+
+       if (len < 0)
+               return len;
+
+       return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
+}
+
+static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
+                           const char *buf)
+{
+       int v = read_string_list(buf, bch_cache_modes);
+       if (v < 0)
+               return v;
+
+       cgroup_to_bcache(cgrp)->cache_mode = v - 1;
+       return 0;
+}
+
+static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
+{
+       return cgroup_to_bcache(cgrp)->verify;
+}
+
+static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
+{
+       cgroup_to_bcache(cgrp)->verify = val;
+       return 0;
+}
+
+static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
+{
+       struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
+       return atomic_read(&bcachecg->stats.cache_hits);
+}
+
+static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
+{
+       struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
+       return atomic_read(&bcachecg->stats.cache_misses);
+}
+
+static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
+                                        struct cftype *cft)
+{
+       struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
+       return atomic_read(&bcachecg->stats.cache_bypass_hits);
+}
+
+static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
+                                          struct cftype *cft)
+{
+       struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
+       return atomic_read(&bcachecg->stats.cache_bypass_misses);
+}
+
+static struct cftype bch_files[] = {
+       {
+               .name           = "cache_mode",
+               .read           = cache_mode_read,
+               .write_string   = cache_mode_write,
+       },
+       {
+               .name           = "verify",
+               .read_u64       = bch_verify_read,
+               .write_u64      = bch_verify_write,
+       },
+       {
+               .name           = "cache_hits",
+               .read_u64       = bch_cache_hits_read,
+       },
+       {
+               .name           = "cache_misses",
+               .read_u64       = bch_cache_misses_read,
+       },
+       {
+               .name           = "cache_bypass_hits",
+               .read_u64       = bch_cache_bypass_hits_read,
+       },
+       {
+               .name           = "cache_bypass_misses",
+               .read_u64       = bch_cache_bypass_misses_read,
+       },
+       { }     /* terminate */
+};
+
+static void init_bch_cgroup(struct bch_cgroup *cg)
+{
+       cg->cache_mode = -1;
+}
+
+static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
+{
+       struct bch_cgroup *cg;
+
+       cg = kzalloc(sizeof(*cg), GFP_KERNEL);
+       if (!cg)
+               return ERR_PTR(-ENOMEM);
+       init_bch_cgroup(cg);
+       return &cg->css;
+}
+
+static void bcachecg_destroy(struct cgroup *cgroup)
+{
+       struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
+       free_css_id(&bcache_subsys, &cg->css);
+       kfree(cg);
+}
+
+struct cgroup_subsys bcache_subsys = {
+       .create         = bcachecg_create,
+       .destroy        = bcachecg_destroy,
+       .subsys_id      = bcache_subsys_id,
+       .name           = "bcache",
+       .module         = THIS_MODULE,
+};
+EXPORT_SYMBOL_GPL(bcache_subsys);
+#endif
+
+static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
+{
+#ifdef CONFIG_CGROUP_BCACHE
+       int r = bch_bio_to_cgroup(bio)->cache_mode;
+       if (r >= 0)
+               return r;
+#endif
+       return BDEV_CACHE_MODE(&dc->sb);
+}
+
+static bool verify(struct cached_dev *dc, struct bio *bio)
+{
+#ifdef CONFIG_CGROUP_BCACHE
+       if (bch_bio_to_cgroup(bio)->verify)
+               return true;
+#endif
+       return dc->verify;
+}
+
+static void bio_csum(struct bio *bio, struct bkey *k)
+{
+       struct bio_vec *bv;
+       uint64_t csum = 0;
+       int i;
+
+       bio_for_each_segment(bv, bio, i) {
+               void *d = kmap(bv->bv_page) + bv->bv_offset;
+               csum = crc64_update(csum, d, bv->bv_len);
+               kunmap(bv->bv_page);
+       }
+
+       k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
+}
+
+/* Insert data into cache */
+
+static void bio_invalidate(struct closure *cl)
+{
+       struct btree_op *op = container_of(cl, struct btree_op, cl);
+       struct bio *bio = op->cache_bio;
+
+       pr_debug("invalidating %i sectors from %llu",
+                bio_sectors(bio), (uint64_t) bio->bi_sector);
+
+       while (bio_sectors(bio)) {
+               unsigned len = min(bio_sectors(bio), 1U << 14);
+
+               if (bch_keylist_realloc(&op->keys, 0, op->c))
+                       goto out;
+
+               bio->bi_sector  += len;
+               bio->bi_size    -= len << 9;
+
+               bch_keylist_add(&op->keys, &KEY(op->inode, bio->bi_sector, 
len));
+       }
+
+       op->insert_data_done = true;
+       bio_put(bio);
+out:
+       continue_at(cl, bch_journal, bcache_wq);
+}
+
+struct open_bucket {
+       struct list_head        list;
+       struct task_struct      *last;
+       unsigned                sectors_free;
+       BKEY_PADDED(key);
+};
+
+void bch_open_buckets_free(struct cache_set *c)
+{
+       struct open_bucket *b;
+
+       while (!list_empty(&c->data_buckets)) {
+               b = list_first_entry(&c->data_buckets,
+                                    struct open_bucket, list);
+               list_del(&b->list);
+               kfree(b);
+       }
+}
+
+int bch_open_buckets_alloc(struct cache_set *c)
+{
+       spin_lock_init(&c->data_bucket_lock);
+
+       for (int i = 0; i < 6; i++) {
+               struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
+               if (!b)
+                       return -ENOMEM;
+
+               list_add(&b->list, &c->data_buckets);
+       }
+
+       return 0;
+}
+
+/*
+ * We keep multiple buckets open for writes, and try to segregate different
+ * write streams for better cache utilization: first we look for a bucket where
+ * the last write to it was sequential with the current write, and failing that
+ * we look for a bucket that was last used by the same task.
+ *
+ * The ideas is if you've got multiple tasks pulling data into the cache at the
+ * same time, you'll get better cache utilization if you try to segregate their
+ * data and preserve locality.
+ *
+ * For example, say you've starting Firefox at the same time you're copying a
+ * bunch of files. Firefox will likely end up being fairly hot and stay in the
+ * cache awhile, but the data you copied might not be; if you wrote all that
+ * data to the same buckets it'd get invalidated at the same time.
+ *
+ * Both of those tasks will be doing fairly random IO so we can't rely on
+ * detecting sequential IO to segregate their data, but going off of the task
+ * should be a sane heuristic.
+ */
+static struct open_bucket *pick_data_bucket(struct cache_set *c,
+                                           const struct bkey *search,
+                                           struct task_struct *task,
+                                           struct bkey *alloc)
+{
+       struct open_bucket *ret, *ret_task = NULL;
+
+       list_for_each_entry_reverse(ret, &c->data_buckets, list)
+               if (!bkey_cmp(&ret->key, search))
+                       goto found;
+               else if (ret->last == task)
+                       ret_task = ret;
+
+       ret = ret_task ?: list_first_entry(&c->data_buckets,
+                                          struct open_bucket, list);
+found:
+       if (!ret->sectors_free && KEY_PTRS(alloc)) {
+               ret->sectors_free = c->sb.bucket_size;
+               bkey_copy(&ret->key, alloc);
+               bkey_init(alloc);
+       }
+
+       if (!ret->sectors_free)
+               ret = NULL;
+
+       return ret;
+}
+
+/*
+ * Allocates some space in the cache to write to, and k to point to the newly
+ * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
+ * end of the newly allocated space).
+ *
+ * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
+ * sectors were actually allocated.
+ *
+ * If s->writeback is true, will not fail.
+ */
+static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
+                             struct search *s)
+{
+       struct cache_set *c = s->op.c;
+       struct open_bucket *b;
+       BKEY_PADDED(key) alloc;
+       struct closure cl, *w = NULL;
+
+       if (s->writeback) {
+               closure_init_stack(&cl);
+               w = &cl;
+       }
+
+       /*
+        * We might have to allocate a new bucket, which we can't do with a
+        * spinlock held. So if we have to allocate, we drop the lock, allocate
+        * and then retry. KEY_PTRS() indicates whether alloc points to
+        * allocated bucket(s).
+        */
+
+       bkey_init(&alloc.key);
+       spin_lock(&c->data_bucket_lock);
+
+       while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
+               spin_unlock(&c->data_bucket_lock);
+
+               if (bch_bucket_alloc_set(c, GC_MARK_RECLAIMABLE,
+                                        s->op.write_prio, &alloc.key, 1, w))
+                       return false;
+
+               spin_lock(&c->data_bucket_lock);
+       }
+
+       /*
+        * If we had to allocate, we might race and not need to allocate the
+        * second time we call find_data_bucket(). If we allocated a bucket but
+        * didn't use it, drop the refcount bch_bucket_alloc_set() took:
+        */
+       if (KEY_PTRS(&alloc.key))
+               __bkey_put(c, &alloc.key);
+
+       for (unsigned i = 0; i < KEY_PTRS(&b->key); i++)
+               EBUG_ON(ptr_stale(c, &b->key, i));
+
+       /* Set up the pointer to the space we're allocating: */
+
+       for (unsigned i = 0; i < KEY_PTRS(&b->key); i++)
+               k->ptr[i] = b->key.ptr[i];
+
+       sectors = min(sectors, b->sectors_free);
+
+       SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
+       SET_KEY_SIZE(k, sectors);
+       SET_KEY_PTRS(k, KEY_PTRS(&b->key));
+
+       /*
+        * Move b to the end of the lru, and keep track of what this bucket was
+        * last used for:
+        */
+       list_move_tail(&b->list, &c->data_buckets);
+       bkey_copy_key(&b->key, k);
+       b->last = s->task;
+
+       b->sectors_free -= sectors;
+
+       for (unsigned i = 0; i < KEY_PTRS(&b->key); i++) {
+               SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
+
+               atomic_long_add(sectors,
+                               &PTR_CACHE(c, &b->key, i)->sectors_written);
+       }
+
+       if (b->sectors_free < c->sb.block_size)
+               b->sectors_free = 0;
+
+       /*
+        * k takes refcounts on the buckets it points to until it's inserted
+        * into the btree, but if we're done with this bucket we just transfer
+        * get_data_bucket()'s refcount.
+        */
+       if (b->sectors_free)
+               for (unsigned i = 0; i < KEY_PTRS(&b->key); i++)
+                       atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
+
+       spin_unlock(&c->data_bucket_lock);
+       return true;
+}
+
+static void bch_insert_data_error(struct closure *cl)
+{
+       struct btree_op *op = container_of(cl, struct btree_op, cl);
+
+       /*
+        * Our data write just errored, which means we've got a bunch of keys to
+        * insert that point to data that wasn't succesfully written.
+        *
+        * We don't have to insert those keys but we still have to invalidate
+        * that region of the cache - so, if we just strip off all the pointers
+        * from the keys we'll accomplish just that.
+        */
+
+       struct bkey *src = op->keys.bottom, *dst = op->keys.bottom;
+
+       while (src != op->keys.top) {
+               struct bkey *n = bkey_next(src);
+
+               SET_KEY_PTRS(src, 0);
+               bkey_copy(dst, src);
+
+               dst = bkey_next(dst);
+               src = n;
+       }
+
+       op->keys.top = dst;
+
+       bch_journal(cl);
+}
+
+static void bch_insert_data_endio(struct bio *bio, int error)
+{
+       struct closure *cl = bio->bi_private;
+       struct btree_op *op = container_of(cl, struct btree_op, cl);
+       struct search *s = container_of(op, struct search, op);
+
+       if (error) {
+               /* TODO: We could try to recover from this. */
+               if (s->writeback)
+                       s->error = error;
+               else if (s->write)
+                       set_closure_fn(cl, bch_insert_data_error, bcache_wq);
+               else
+                       set_closure_fn(cl, NULL, NULL);
+       }
+
+       bch_bbio_endio(op->c, bio, error, "writing data to cache");
+}
+
+static void bch_insert_data_loop(struct closure *cl)
+{
+       struct btree_op *op = container_of(cl, struct btree_op, cl);
+       struct search *s = container_of(op, struct search, op);
+       struct bio *bio = op->cache_bio, *n;
+
+       if (op->skip)
+               return bio_invalidate(cl);
+
+       if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
+               set_gc_sectors(op->c);
+               bch_queue_gc(op->c);
+       }
+
+       bio->bi_end_io  = bch_insert_data_endio;
+       bio->bi_private = cl;
+
+       do {
+               struct bkey *k;
+               struct bio_set *split = s->d
+                       ? s->d->bio_split : op->c->bio_split;
+
+               /* 1 for the device pointer and 1 for the chksum */
+               if (bch_keylist_realloc(&op->keys,
+                                       1 + (op->csum ? 1 : 0),
+                                       op->c))
+                       continue_at(cl, bch_journal, bcache_wq);
+
+               k = op->keys.top;
+               bkey_init(k);
+               SET_KEY_INODE(k, op->inode);
+               SET_KEY_OFFSET(k, bio->bi_sector);
+
+               if (!bch_alloc_sectors(k, bio_sectors(bio), s))
+                       goto err;
+
+               n = bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
+               if (!n) {
+                       __bkey_put(op->c, k);
+                       continue_at(cl, bch_insert_data_loop, bcache_wq);
+               }
+
+               if (s->writeback) {
+                       SET_KEY_DIRTY(k, true);
+
+                       for (unsigned i = 0; i < KEY_PTRS(k); i++)
+                               SET_GC_MARK(PTR_BUCKET(op->c, k, i),
+                                           GC_MARK_DIRTY);
+               }
+
+               SET_KEY_CSUM(k, op->csum);
+               if (KEY_CSUM(k))
+                       bio_csum(n, k);
+
+               pr_debug("%s", pkey(k));
+               bch_keylist_push(&op->keys);
+
+               trace_bcache_cache_insert(n, n->bi_sector, n->bi_bdev);
+               n->bi_rw |= REQ_WRITE;
+               bch_submit_bbio(n, op->c, k, 0);
+       } while (n != bio);
+
+       op->insert_data_done = true;
+       continue_at(cl, bch_journal, bcache_wq);
+err:
+       /* bch_alloc_sectors() blocks if s->writeback = true */
+       BUG_ON(s->writeback);
+
+       /*
+        * But if it's not a writeback write we'd rather just bail out if
+        * there aren't any buckets ready to write to - it might take awhile and
+        * we might be starving btree writes for gc or something.
+        */
+
+       if (s->write) {
+               /*
+                * Writethrough write: We can't complete the write until we've
+                * updated the index. But we don't want to delay the write while
+                * we wait for buckets to be freed up, so just invalidate the
+                * rest of the write.
+                */
+               op->skip = true;
+               return bio_invalidate(cl);
+       } else {
+               /*
+                * From a cache miss, we can just insert the keys for the data
+                * we have written or bail out if we didn't do anything.
+                */
+               op->insert_data_done = true;
+
+               if (!bch_keylist_empty(&op->keys))
+                       continue_at(cl, bch_journal, bcache_wq);
+               else
+                       closure_return(cl);
+       }
+}
+
+/**
+ * bch_insert_data - stick some data in the cache
+ *
+ * This is the starting point for any data to end up in a cache device; it 
could
+ * be from a normal write, or a writeback write, or a write to a flash only
+ * volume - it's also used by the moving garbage collector to compact data in
+ * mostly empty buckets.
+ *
+ * It first writes the data to the cache, creating a list of keys to be 
inserted
+ * (if the data had to be fragmented there will be multiple keys); after the
+ * data is written it calls bch_journal, and after the keys have been added to
+ * the next journal write they're inserted into the btree.
+ *
+ * It inserts the data in op->cache_bio; bi_sector is used for the key offset,
+ * and op->inode is used for the key inode.
+ *
+ * If op->skip is true, instead of inserting the data it invalidates the region
+ * of the cache represented by op->cache_bio and op->inode.
+ */
+void bch_insert_data(struct closure *cl)
+{
+       struct btree_op *op = container_of(cl, struct btree_op, cl);
+
+       bch_keylist_init(&op->keys);
+       bio_get(op->cache_bio);
+       bch_insert_data_loop(cl);
+}
+
+void bch_btree_insert_async(struct closure *cl)
+{
+       struct btree_op *op = container_of(cl, struct btree_op, cl);
+       struct search *s = container_of(op, struct search, op);
+
+       if (bch_btree_insert(op, op->c)) {
+               s->error                = -ENOMEM;
+               op->insert_data_done    = true;
+       }
+
+       if (op->insert_data_done) {
+               bch_keylist_free(&op->keys);
+               closure_return(cl);
+       } else
+               continue_at(cl, bch_insert_data_loop, bcache_wq);
+}
+
+/* Common code for the make_request functions */
+
+static void request_endio(struct bio *bio, int error)
+{
+       struct closure *cl = bio->bi_private;
+
+       if (error) {
+               struct search *s = container_of(cl, struct search, cl);
+               s->error = error;
+               /* Only cache read errors are recoverable */
+               s->recoverable = false;
+       }
+
+       bio_put(bio);
+       closure_put(cl);
+}
+
+void bch_cache_read_endio(struct bio *bio, int error)
+{
+       struct bbio *b = container_of(bio, struct bbio, bio);
+       struct closure *cl = bio->bi_private;
+       struct search *s = container_of(cl, struct search, cl);
+
+       /*
+        * If the bucket was reused while our bio was in flight, we might have
+        * read the wrong data. Set s->error but not error so it doesn't get
+        * counted against the cache device, but we'll still reread the data
+        * from the backing device.
+        */
+
+       if (error)
+               s->error = error;
+       else if (ptr_stale(s->op.c, &b->key, 0)) {
+               atomic_long_inc(&s->op.c->cache_read_races);
+               s->error = -EINTR;
+       }
+
+       bch_bbio_endio(s->op.c, bio, error, "reading from cache");
+}
+
+static void bio_complete(struct search *s)
+{
+       if (s->orig_bio) {
+               if (s->error)
+                       clear_bit(BIO_UPTODATE, &s->orig_bio->bi_flags);
+
+               trace_bcache_request_end(s, s->orig_bio);
+               bio_endio(s->orig_bio, s->error);
+               s->orig_bio = NULL;
+       }
+}
+
+static void do_bio_hook(struct search *s)
+{
+       struct bio *bio = &s->bio.bio;
+       memcpy(bio, s->orig_bio, sizeof(struct bio));
+
+       bio->bi_end_io          = request_endio;
+       bio->bi_private         = &s->cl;
+       atomic_set(&bio->bi_cnt, 3);
+}
+
+static void search_free(struct closure *cl)
+{
+       struct search *s = container_of(cl, struct search, cl);
+       bio_complete(s);
+
+       if (s->op.cache_bio)
+               bio_put(s->op.cache_bio);
+
+       if (s->unaligned_bvec)
+               mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
+
+       closure_debug_destroy(cl);
+       mempool_free(s, s->d->c->search);
+}
+
+static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
+{
+       struct bio_vec *bv;
+       struct search *s = mempool_alloc(d->c->search, GFP_NOIO);
+       memset(s, 0, offsetof(struct search, op.keys));
+
+       __closure_init(&s->cl, NULL);
+
+       s->op.inode             = d->id;
+       s->op.c                 = d->c;
+       s->d                    = d;
+       s->op.lock              = -1;
+       s->task                 = current;
+       s->orig_bio             = bio;
+       s->write                = (bio->bi_rw & REQ_WRITE) != 0;
+       s->op.flush_journal     = (bio->bi_rw & REQ_FLUSH) != 0;
+       s->op.skip              = (bio->bi_rw & REQ_DISCARD) != 0;
+       s->recoverable          = 1;
+       do_bio_hook(s);
+
+       if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
+               bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
+               memcpy(bv, bio_iovec(bio),
+                      sizeof(struct bio_vec) * bio_segments(bio));
+
+               s->bio.bio.bi_io_vec    = bv;
+               s->unaligned_bvec       = 1;
+       }
+
+       return s;
+}
+
+static void btree_read_async(struct closure *cl)
+{
+       struct btree_op *op = container_of(cl, struct btree_op, cl);
+
+       int ret = btree_root(search_recurse, op->c, op);
+
+       if (ret == -EAGAIN)
+               continue_at(cl, btree_read_async, bcache_wq);
+
+       closure_return(cl);
+}
+
+/* Cached devices */
+
+static void cached_dev_bio_complete(struct closure *cl)
+{
+       struct search *s = container_of(cl, struct search, cl);
+       struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
+
+       search_free(cl);
+       cached_dev_put(dc);
+}
+
+/* Process reads */
+
+static void cached_dev_read_complete(struct closure *cl)
+{
+       struct search *s = container_of(cl, struct search, cl);
+
+       if (s->cache_miss)
+               bio_put(s->cache_miss);
+
+       if (s->op.cache_bio) {
+               int i;
+               struct bio_vec *bv;
+
+               __bio_for_each_segment(bv, s->op.cache_bio, i, 0)
+                       __free_page(bv->bv_page);
+       }
+
+       cached_dev_bio_complete(cl);
+}
+
+static void request_read_error(struct closure *cl)
+{
+       struct search *s = container_of(cl, struct search, cl);
+       struct bio_vec *bv;
+       int i;
+
+       if (s->recoverable) {
+               /* The cache read failed, but we can retry from the backing
+                * device.
+                */
+               pr_debug("recovering at sector %llu",
+                        (uint64_t) s->orig_bio->bi_sector);
+
+               s->error = 0;
+               bv = s->bio.bio.bi_io_vec;
+               do_bio_hook(s);
+               s->bio.bio.bi_io_vec = bv;
+
+               if (!s->unaligned_bvec)
+                       bio_for_each_segment(bv, s->orig_bio, i)
+                               bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
+               else
+                       memcpy(s->bio.bio.bi_io_vec,
+                              bio_iovec(s->orig_bio),
+                              sizeof(struct bio_vec) *
+                              bio_segments(s->orig_bio));
+
+               /* XXX: invalidate cache */
+
+               trace_bcache_read_retry(&s->bio.bio);
+               closure_bio_submit(&s->bio.bio, &s->cl);
+       }
+
+       continue_at(cl, cached_dev_read_complete, NULL);
+}
+
+static void request_read_done(struct closure *cl)
+{
+       struct search *s = container_of(cl, struct search, cl);
+       struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
+
+       /*
+        * s->cache_bio != NULL implies that we had a cache miss; cache_bio now
+        * contains data ready to be inserted into the cache.
+        *
+        * First, we copy the data we just read from cache_bio's bounce buffers
+        * to the buffers the original bio pointed to:
+        */
+
+       if (s->op.cache_bio) {
+               struct bio_vec *src, *dst;
+               unsigned src_offset, dst_offset, bytes;
+               void *dst_ptr;
+
+               bio_reset(s->op.cache_bio);
+               s->op.cache_bio->bi_sector      = s->cache_miss->bi_sector;
+               s->op.cache_bio->bi_bdev        = s->cache_miss->bi_bdev;
+               s->op.cache_bio->bi_size        = s->cache_bio_sectors << 9;
+               bio_map(s->op.cache_bio, NULL);
+
+               src = bio_iovec(s->op.cache_bio);
+               dst = bio_iovec(s->cache_miss);
+               src_offset = src->bv_offset;
+               dst_offset = dst->bv_offset;
+               dst_ptr = kmap(dst->bv_page);
+
+               while (1) {
+                       if (dst_offset == dst->bv_offset + dst->bv_len) {
+                               kunmap(dst->bv_page);
+                               dst++;
+                               if (dst == bio_iovec_idx(s->cache_miss,
+                                                        
s->cache_miss->bi_vcnt))
+                                       break;
+
+                               dst_offset = dst->bv_offset;
+                               dst_ptr = kmap(dst->bv_page);
+                       }
+
+                       if (src_offset == src->bv_offset + src->bv_len) {
+                               src++;
+                               if (src == bio_iovec_idx(s->op.cache_bio,
+                                                        
s->op.cache_bio->bi_vcnt))
+                                       BUG();
+
+                               src_offset = src->bv_offset;
+                       }
+
+                       bytes = min(dst->bv_offset + dst->bv_len - dst_offset,
+                                   src->bv_offset + src->bv_len - src_offset);
+
+                       memcpy(dst_ptr + dst_offset,
+                              page_address(src->bv_page) + src_offset,
+                              bytes);
+
+                       src_offset      += bytes;
+                       dst_offset      += bytes;
+               }
+       }
+
+       if (verify(dc, &s->bio.bio) && s->recoverable)
+               bch_data_verify(s);
+
+       bio_complete(s);
+
+       if (s->op.cache_bio && !atomic_read(&s->op.c->closing)) {
+               s->op.type = BTREE_REPLACE;
+               closure_call(bch_insert_data, &s->op.cl, cl);
+       }
+
+       continue_at(cl, cached_dev_read_complete, NULL);
+}
+
+static void request_read_done_bh(struct closure *cl)
+{
+       struct search *s = container_of(cl, struct search, cl);
+       struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
+
+       if (s->cache_miss && s->op.insert_collision)
+               bch_mark_cache_miss_collision(s);
+
+       bch_mark_cache_accounting(s, !s->cache_miss, s->op.skip);
+
+       if (s->error)
+               continue_at_nobarrier(cl, request_read_error, bcache_wq);
+       else if (s->op.cache_bio || verify(dc, &s->bio.bio))
+               continue_at_nobarrier(cl, request_read_done, bcache_wq);
+       else
+               continue_at_nobarrier(cl, cached_dev_read_complete, NULL);
+}
+
+static int cached_dev_cache_miss(struct btree *b, struct search *s,
+                                struct bio *bio, unsigned sectors)
+{
+       int ret = 0;
+       unsigned reada;
+       struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
+       struct bio *miss;
+
+       miss = bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
+       if (!miss)
+               return -EAGAIN;
+
+       if (miss == bio)
+               s->op.lookup_done = true;
+
+       if (s->cache_miss || s->op.skip)
+               goto out_submit;
+
+       if (miss != bio ||
+           (bio->bi_rw & REQ_RAHEAD) ||
+           (bio->bi_rw & REQ_META) ||
+           s->op.c->gc_stats.in_use >= CUTOFF_CACHE_READA)
+               reada = 0;
+       else {
+               reada = dc->readahead >> 9;
+
+               if (bio_end(miss) + reada > bdev_sectors(miss->bi_bdev))
+                       reada = bdev_sectors(miss->bi_bdev) - bio_end(miss);
+       }
+
+       s->cache_bio_sectors = bio_sectors(miss) + reada;
+       s->op.cache_bio = bio_alloc_bioset(GFP_NOWAIT,
+                       DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
+                       dc->disk.bio_split);
+
+       if (!s->op.cache_bio)
+               goto out_submit;
+
+       s->op.cache_bio->bi_sector      = miss->bi_sector;
+       s->op.cache_bio->bi_bdev        = miss->bi_bdev;
+       s->op.cache_bio->bi_size        = s->cache_bio_sectors << 9;
+
+       s->op.cache_bio->bi_end_io      = request_endio;
+       s->op.cache_bio->bi_private     = &s->cl;
+
+       /* btree_search_recurse()'s btree iterator is no good anymore */
+       ret = -EINTR;
+       if (!bch_btree_insert_check_key(b, &s->op, s->op.cache_bio))
+               goto out_put;
+
+       bio_map(s->op.cache_bio, NULL);
+       if (bio_alloc_pages(s->op.cache_bio, __GFP_NOWARN|GFP_NOIO))
+               goto out_put;
+
+       s->cache_miss = miss;
+       bio_get(s->op.cache_bio);
+
+       trace_bcache_cache_miss(s->orig_bio);
+       closure_bio_submit(s->op.cache_bio, &s->cl);
+
+       return ret;
+out_put:
+       bio_put(s->op.cache_bio);
+       s->op.cache_bio = NULL;
+out_submit:
+       closure_bio_submit(miss, &s->cl);
+       return ret;
+}
+
+static void request_read(struct cached_dev *dc, struct search *s)
+{
+       struct closure *cl = &s->cl;
+
+       check_should_skip(dc, s);
+       closure_call(btree_read_async, &s->op.cl, cl);
+
+       continue_at(cl, request_read_done_bh, NULL);
+}
+
+/* Process writes */
+
+static void cached_dev_write_complete(struct closure *cl)
+{
+       struct search *s = container_of(cl, struct search, cl);
+       struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
+
+       up_read_non_owner(&dc->writeback_lock);
+       cached_dev_bio_complete(cl);
+}
+
+static bool should_writeback(struct cached_dev *dc, struct bio *bio)
+{
+       unsigned threshold = (bio->bi_rw & REQ_SYNC)
+               ? CUTOFF_WRITEBACK_SYNC
+               : CUTOFF_WRITEBACK;
+
+       return !atomic_read(&dc->disk.detaching) &&
+               cache_mode(dc, bio) == CACHE_MODE_WRITEBACK &&
+               dc->disk.c->gc_stats.in_use < threshold;
+}
+
+static void request_write(struct cached_dev *dc, struct search *s)
+{
+       struct closure *cl = &s->cl;
+       struct bio *bio = &s->bio.bio;
+       struct bkey start, end;
+       start = KEY(dc->disk.id, bio->bi_sector, 0);
+       end = KEY(dc->disk.id, bio_end(bio), 0);
+
+       bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end);
+
+       check_should_skip(dc, s);
+       down_read_non_owner(&dc->writeback_lock);
+
+       if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
+               s->op.skip      = false;
+               s->writeback    = true;
+       }
+
+       if (bio->bi_rw & REQ_DISCARD) {
+               if (blk_queue_discard(bdev_get_queue(dc->bdev)))
+                       closure_bio_submit(bio, cl);
+
+               goto skip;
+       }
+
+       if (s->op.skip)
+               goto skip;
+
+       if (should_writeback(dc, s->orig_bio))
+               s->writeback = true;
+
+       if (!s->writeback) {
+               s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
+                                                  dc->disk.bio_split);
+               if (!s->op.cache_bio)
+                       goto skip;
+
+               trace_bcache_writethrough(s->orig_bio);
+               closure_bio_submit(bio, cl);
+       } else {
+               s->op.cache_bio = bio;
+               trace_bcache_writeback(s->orig_bio);
+               bch_writeback_add(dc, bio_sectors(bio));
+       }
+out:
+       closure_call(bch_insert_data, &s->op.cl, cl);
+       continue_at(cl, cached_dev_write_complete, NULL);
+skip:
+       s->op.skip = true;
+       s->op.cache_bio = s->orig_bio;
+       bio_get(s->op.cache_bio);
+       trace_bcache_write_skip(s->orig_bio);
+
+       closure_bio_submit(bio, cl);
+       goto out;
+}
+
+static void request_nodata(struct cached_dev *dc, struct search *s)
+{
+       struct closure *cl = &s->cl;
+       struct bio *bio = &s->bio.bio;
+
+       if (bio->bi_rw & REQ_DISCARD) {
+               request_write(dc, s);
+               return;
+       }
+
+       if (s->op.flush_journal)
+               bch_journal_meta(s->op.c, cl);
+
+       closure_bio_submit(bio, cl);
+
+       continue_at(cl, cached_dev_bio_complete, NULL);
+}
+
+/* Cached devices - read & write stuff */
+
+int bch_get_congested(struct cache_set *c)
+{
+       int i;
+
+       if (!c->congested_read_threshold_us &&
+           !c->congested_write_threshold_us)
+               return 0;
+
+       i = (local_clock_us() - c->congested_last_us) / 1024;
+       if (i < 0)
+               return 0;
+
+       i += atomic_read(&c->congested);
+       if (i >= 0)
+               return 0;
+
+       i += CONGESTED_MAX;
+
+       return i <= 0 ? 1 : fract_exp_two(i, 6);
+}
+
+static void add_sequential(struct task_struct *t)
+{
+       ewma_add(t->sequential_io_avg,
+                t->sequential_io, 8, 0);
+
+       t->sequential_io = 0;
+}
+
+static void check_should_skip(struct cached_dev *dc, struct search *s)
+{
+       struct hlist_head *iohash(uint64_t k)
+       { return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; }
+
+       struct cache_set *c = s->op.c;
+       struct bio *bio = &s->bio.bio;
+
+       long rand;
+       int cutoff = bch_get_congested(c);
+       unsigned mode = cache_mode(dc, bio);
+
+       if (atomic_read(&dc->disk.detaching) ||
+           c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
+           (bio->bi_rw & REQ_DISCARD))
+               goto skip;
+
+       if (mode == CACHE_MODE_NONE ||
+           (mode == CACHE_MODE_WRITEAROUND &&
+            (bio->bi_rw & REQ_WRITE)))
+               goto skip;
+
+       if (bio->bi_sector   & (c->sb.block_size - 1) ||
+           bio_sectors(bio) & (c->sb.block_size - 1)) {
+               pr_debug("skipping unaligned io");
+               goto skip;
+       }
+
+       if (!cutoff) {
+               cutoff = dc->sequential_cutoff >> 9;
+
+               if (!cutoff)
+                       goto rescale;
+
+               if (mode == CACHE_MODE_WRITEBACK &&
+                   (bio->bi_rw & REQ_WRITE) &&
+                   (bio->bi_rw & REQ_SYNC))
+                       goto rescale;
+       }
+
+       if (dc->sequential_merge) {
+               struct hlist_node *cursor;
+               struct io *i;
+
+               spin_lock(&dc->io_lock);
+
+               hlist_for_each_entry(i, cursor, iohash(bio->bi_sector), hash)
+                       if (i->last == bio->bi_sector &&
+                           time_before(jiffies, i->jiffies))
+                               goto found;
+
+               i = list_first_entry(&dc->io_lru, struct io, lru);
+
+               add_sequential(s->task);
+               i->sequential = 0;
+found:
+               if (i->sequential + bio->bi_size > i->sequential)
+                       i->sequential   += bio->bi_size;
+
+               i->last                  = bio_end(bio);
+               i->jiffies               = jiffies + msecs_to_jiffies(5000);
+               s->task->sequential_io   = i->sequential;
+
+               hlist_del(&i->hash);
+               hlist_add_head(&i->hash, iohash(i->last));
+               list_move_tail(&i->lru, &dc->io_lru);
+
+               spin_unlock(&dc->io_lock);
+       } else {
+               s->task->sequential_io = bio->bi_size;
+
+               add_sequential(s->task);
+       }
+
+       rand = get_random_int();
+       cutoff -= bitmap_weight(&rand, BITS_PER_LONG);
+
+       if (cutoff <= (int) (max(s->task->sequential_io,
+                                s->task->sequential_io_avg) >> 9))
+               goto skip;
+
+rescale:
+       bch_rescale_priorities(c, bio_sectors(bio));
+       return;
+skip:
+       bch_mark_sectors_bypassed(s, bio_sectors(bio));
+       s->op.skip = true;
+}
+
+static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
+{
+       struct search *s;
+       struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
+       struct cached_dev *dc = container_of(d, struct cached_dev, disk);
+
+       bio->bi_bdev = dc->bdev;
+       bio->bi_sector += BDEV_DATA_START;
+
+       if (cached_dev_get(dc)) {
+               s = search_alloc(bio, d);
+               trace_bcache_request_start(s, bio);
+
+               if (!bio_has_data(bio))
+                       request_nodata(dc, s);
+               else if (bio->bi_rw & REQ_WRITE)
+                       request_write(dc, s);
+               else
+                       request_read(dc, s);
+       } else
+               generic_make_request(bio);
+}
+
+static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
+                           unsigned int cmd, unsigned long arg)
+{
+       struct cached_dev *dc = container_of(d, struct cached_dev, disk);
+       return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
+}
+
+static int cached_dev_congested(void *data, int bits)
+{
+       struct bcache_device *d = data;
+       struct cached_dev *dc = container_of(d, struct cached_dev, disk);
+       struct request_queue *q = bdev_get_queue(dc->bdev);
+       int ret = 0;
+
+       if (bdi_congested(&q->backing_dev_info, bits))
+               return 1;
+
+       if (cached_dev_get(dc)) {
+               struct cache *ca;
+
+               for_each_cache(ca, d->c) {
+                       q = bdev_get_queue(ca->bdev);
+                       ret |= bdi_congested(&q->backing_dev_info, bits);
+               }
+
+               cached_dev_put(dc);
+       }
+
+       return ret;
+}
+
+void bch_cached_dev_request_init(struct cached_dev *dc)
+{
+       struct gendisk *g = dc->disk.disk;
+
+       g->queue->make_request_fn               = cached_dev_make_request;
+       g->queue->backing_dev_info.congested_fn = cached_dev_congested;
+       dc->disk.cache_miss                     = cached_dev_cache_miss;
+       dc->disk.ioctl                          = cached_dev_ioctl;
+}
+
+/* Flash backed devices */
+
+static int flash_dev_cache_miss(struct btree *b, struct search *s,
+                               struct bio *bio, unsigned sectors)
+{
+       /* Zero fill bio */
+
+       while (bio->bi_idx != bio->bi_vcnt) {
+               struct bio_vec *bv = bio_iovec(bio);
+               unsigned j = min(bv->bv_len >> 9, sectors);
+
+               void *p = kmap(bv->bv_page);
+               memset(p + bv->bv_offset, 0, j << 9);
+               kunmap(bv->bv_page);
+
+               bv->bv_len      -= j << 9;
+               bv->bv_offset   += j << 9;
+
+               if (bv->bv_len)
+                       return 0;
+
+               bio->bi_sector  += j;
+               bio->bi_size    -= j << 9;
+
+               bio->bi_idx++;
+               sectors         -= j;
+       }
+
+       s->op.lookup_done = true;
+
+       return 0;
+}
+
+static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
+{
+       struct search *s;
+       struct closure *cl;
+       struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
+
+       s = search_alloc(bio, d);
+       cl = &s->cl;
+       bio = &s->bio.bio;
+
+       trace_bcache_request_start(s, bio);
+
+       if (bio_has_data(bio) && !(bio->bi_rw & REQ_WRITE)) {
+               closure_call(btree_read_async, &s->op.cl, cl);
+       } else if (bio_has_data(bio) || s->op.skip) {
+               bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys,
+                                            &KEY(d->id, bio->bi_sector, 0),
+                                            &KEY(d->id, bio_end(bio), 0));
+
+               s->writeback    = true;
+               s->op.cache_bio = bio;
+
+               closure_call(bch_insert_data, &s->op.cl, cl);
+       } else {
+               /* No data - probably a cache flush */
+               if (s->op.flush_journal)
+                       bch_journal_meta(s->op.c, cl);
+       }
+
+       continue_at(cl, search_free, NULL);
+}
+
+static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
+                          unsigned int cmd, unsigned long arg)
+{
+       return -ENOTTY;
+}
+
+static int flash_dev_congested(void *data, int bits)
+{
+       struct bcache_device *d = data;
+       struct request_queue *q;
+       struct cache *ca;
+       int ret = 0;
+
+       for_each_cache(ca, d->c) {
+               q = bdev_get_queue(ca->bdev);
+               ret |= bdi_congested(&q->backing_dev_info, bits);
+       }
+
+       return ret;
+}
+
+void bch_flash_dev_request_init(struct bcache_device *d)
+{
+       struct gendisk *g = d->disk;
+
+       g->queue->make_request_fn               = flash_dev_make_request;
+       g->queue->backing_dev_info.congested_fn = flash_dev_congested;
+       d->cache_miss                           = flash_dev_cache_miss;
+       d->ioctl                                = flash_dev_ioctl;
+}
+
+void bch_request_exit(void)
+{
+#ifdef CONFIG_CGROUP_BCACHE
+       cgroup_unload_subsys(&bcache_subsys);
+#endif
+       if (bch_search_cache)
+               kmem_cache_destroy(bch_search_cache);
+}
+
+int __init bch_request_init(void)
+{
+       bch_search_cache = KMEM_CACHE(search, 0);
+       if (!bch_search_cache)
+               return -ENOMEM;
+
+#ifdef CONFIG_CGROUP_BCACHE
+       cgroup_load_subsys(&bcache_subsys);
+       init_bch_cgroup(&bcache_default_cgroup);
+
+       cgroup_add_cftypes(&bcache_subsys, bch_files);
+#endif
+       return 0;
+}
diff --git a/drivers/md/bcache/request.h b/drivers/md/bcache/request.h
new file mode 100644
index 0000000..adabc46
--- /dev/null
+++ b/drivers/md/bcache/request.h
@@ -0,0 +1,61 @@
+#ifndef _BCACHE_REQUEST_H_
+#define _BCACHE_REQUEST_H_
+
+#include <linux/cgroup.h>
+
+struct search {
+       /* Stack frame for bio_complete */
+       struct closure          cl;
+
+       struct bcache_device    *d;
+       struct task_struct      *task;
+
+       struct bbio             bio;
+       struct bio              *orig_bio;
+       struct bio              *cache_miss;
+       unsigned                cache_bio_sectors;
+
+       unsigned                recoverable:1;
+       unsigned                unaligned_bvec:1;
+
+       unsigned                write:1;
+       unsigned                writeback:1;
+
+       /* IO error returned to s->bio */
+       short                   error;
+
+       /* Anything past op->keys won't get zeroed in do_bio_hook */
+       struct btree_op         op;
+};
+
+void bch_cache_read_endio(struct bio *, int);
+int bch_get_congested(struct cache_set *);
+void bch_insert_data(struct closure *cl);
+void bch_btree_insert_async(struct closure *);
+void bch_cache_read_endio(struct bio *, int);
+
+void bch_open_buckets_free(struct cache_set *);
+int bch_open_buckets_alloc(struct cache_set *);
+
+void bch_cached_dev_request_init(struct cached_dev *dc);
+void bch_flash_dev_request_init(struct bcache_device *d);
+
+extern struct kmem_cache *bch_search_cache, *bch_passthrough_cache;
+
+struct bch_cgroup {
+#ifdef CONFIG_CGROUP_BCACHE
+       struct cgroup_subsys_state      css;
+#endif
+       /*
+        * We subtract one from the index into bch_cache_modes[], so that
+        * default == -1; this makes it so the rest match up with d->cache_mode,
+        * and we use d->cache_mode if cgrp->cache_mode < 0
+        */
+       short                           cache_mode;
+       bool                            verify;
+       struct cache_stat_collector     stats;
+};
+
+struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio);
+
+#endif /* _BCACHE_REQUEST_H_ */
-- 
1.7.7.3

--
To unsubscribe from this list: send the line "unsubscribe linux-bcache" in
the body of a message to majord...@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html

Reply via email to