From: Josef Bacik <jo...@toxicpanda.com>

We are going to track per-extent information, so it'll be necessary to
distinguish between inode infos and extent infos.  Rename fscrypt_info
to fscrypt_inode_info, adjusting any lines that now exceed 80
characters.

Signed-off-by: Josef Bacik <jo...@toxicpanda.com>
[ebiggers: renamed fscrypt_get_info(), adjusted two comments, and fixed
 some lines over 80 characters]
Signed-off-by: Eric Biggers <ebigg...@google.com>
---

Applies to commit 5b11888471806edf699316d4dcb9b426caebbef2 from 
https://git.kernel.org/pub/scm/fs/fscrypt/linux.git branch "for-next"

 fs/crypto/bio.c             |  2 +-
 fs/crypto/crypto.c          | 21 +++++++++---------
 fs/crypto/fname.c           |  6 ++---
 fs/crypto/fscrypt_private.h | 42 ++++++++++++++++++-----------------
 fs/crypto/hooks.c           |  2 +-
 fs/crypto/inline_crypt.c    | 13 ++++++-----
 fs/crypto/keyring.c         |  4 ++--
 fs/crypto/keysetup.c        | 44 +++++++++++++++++++------------------
 fs/crypto/keysetup_v1.c     | 15 ++++++++-----
 fs/crypto/policy.c          | 10 ++++-----
 include/linux/fs.h          |  4 ++--
 include/linux/fscrypt.h     | 10 +++++----
 12 files changed, 92 insertions(+), 81 deletions(-)

diff --git a/fs/crypto/bio.c b/fs/crypto/bio.c
index c8cf77065272e..0ad8c30b8fa50 100644
--- a/fs/crypto/bio.c
+++ b/fs/crypto/bio.c
@@ -104,21 +104,21 @@ static int fscrypt_zeroout_range_inline_crypt(const 
struct inode *inode,
  * filesystem only uses a single block device, ->s_bdev.
  *
  * Note that since each block uses a different IV, this involves writing a
  * different ciphertext to each block; we can't simply reuse the same one.
  *
  * Return: 0 on success; -errno on failure.
  */
 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
                          sector_t pblk, unsigned int len)
 {
-       const struct fscrypt_info *ci = inode->i_crypt_info;
+       const struct fscrypt_inode_info *ci = inode->i_crypt_info;
        const unsigned int du_bits = ci->ci_data_unit_bits;
        const unsigned int du_size = 1U << du_bits;
        const unsigned int du_per_page_bits = PAGE_SHIFT - du_bits;
        const unsigned int du_per_page = 1U << du_per_page_bits;
        u64 du_index = (u64)lblk << (inode->i_blkbits - du_bits);
        u64 du_remaining = (u64)len << (inode->i_blkbits - du_bits);
        sector_t sector = pblk << (inode->i_blkbits - SECTOR_SHIFT);
        struct page *pages[16]; /* write up to 16 pages at a time */
        unsigned int nr_pages;
        unsigned int i;
diff --git a/fs/crypto/crypto.c b/fs/crypto/crypto.c
index 85e2f66dd663f..328470d40dec4 100644
--- a/fs/crypto/crypto.c
+++ b/fs/crypto/crypto.c
@@ -32,21 +32,21 @@ static unsigned int num_prealloc_crypto_pages = 32;
 
 module_param(num_prealloc_crypto_pages, uint, 0444);
 MODULE_PARM_DESC(num_prealloc_crypto_pages,
                "Number of crypto pages to preallocate");
 
 static mempool_t *fscrypt_bounce_page_pool = NULL;
 
 static struct workqueue_struct *fscrypt_read_workqueue;
 static DEFINE_MUTEX(fscrypt_init_mutex);
 
-struct kmem_cache *fscrypt_info_cachep;
+struct kmem_cache *fscrypt_inode_info_cachep;
 
 void fscrypt_enqueue_decrypt_work(struct work_struct *work)
 {
        queue_work(fscrypt_read_workqueue, work);
 }
 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
 
 struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
 {
        if (WARN_ON_ONCE(!fscrypt_bounce_page_pool)) {
@@ -78,41 +78,41 @@ EXPORT_SYMBOL(fscrypt_free_bounce_page);
 
 /*
  * Generate the IV for the given data unit index within the given file.
  * For filenames encryption, index == 0.
  *
  * Keep this in sync with fscrypt_limit_io_blocks().  fscrypt_limit_io_blocks()
  * needs to know about any IV generation methods where the low bits of IV don't
  * simply contain the data unit index (e.g., IV_INO_LBLK_32).
  */
 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index,
-                        const struct fscrypt_info *ci)
+                        const struct fscrypt_inode_info *ci)
 {
        u8 flags = fscrypt_policy_flags(&ci->ci_policy);
 
        memset(iv, 0, ci->ci_mode->ivsize);
 
        if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
                WARN_ON_ONCE(index > U32_MAX);
                WARN_ON_ONCE(ci->ci_inode->i_ino > U32_MAX);
                index |= (u64)ci->ci_inode->i_ino << 32;
        } else if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
                WARN_ON_ONCE(index > U32_MAX);
                index = (u32)(ci->ci_hashed_ino + index);
        } else if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
                memcpy(iv->nonce, ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE);
        }
        iv->index = cpu_to_le64(index);
 }
 
 /* Encrypt or decrypt a single "data unit" of file contents. */
-int fscrypt_crypt_data_unit(const struct fscrypt_info *ci,
+int fscrypt_crypt_data_unit(const struct fscrypt_inode_info *ci,
                            fscrypt_direction_t rw, u64 index,
                            struct page *src_page, struct page *dest_page,
                            unsigned int len, unsigned int offs,
                            gfp_t gfp_flags)
 {
        union fscrypt_iv iv;
        struct skcipher_request *req = NULL;
        DECLARE_CRYPTO_WAIT(wait);
        struct scatterlist dst, src;
        struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
@@ -177,21 +177,21 @@ int fscrypt_crypt_data_unit(const struct fscrypt_info *ci,
  *
  * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
  */
 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
                                              unsigned int len,
                                              unsigned int offs,
                                              gfp_t gfp_flags)
 
 {
        const struct inode *inode = page->mapping->host;
-       const struct fscrypt_info *ci = inode->i_crypt_info;
+       const struct fscrypt_inode_info *ci = inode->i_crypt_info;
        const unsigned int du_bits = ci->ci_data_unit_bits;
        const unsigned int du_size = 1U << du_bits;
        struct page *ciphertext_page;
        u64 index = ((u64)page->index << (PAGE_SHIFT - du_bits)) +
                    (offs >> du_bits);
        unsigned int i;
        int err;
 
        if (WARN_ON_ONCE(!PageLocked(page)))
                return ERR_PTR(-EINVAL);
@@ -260,21 +260,21 @@ EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
  * The length and offset of the data must be aligned to the file's crypto data
  * unit size.  Alignment to the filesystem block size fulfills this 
requirement,
  * as the filesystem block size is always a multiple of the data unit size.
  *
  * Return: 0 on success; -errno on failure
  */
 int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len,
                                     size_t offs)
 {
        const struct inode *inode = folio->mapping->host;
-       const struct fscrypt_info *ci = inode->i_crypt_info;
+       const struct fscrypt_inode_info *ci = inode->i_crypt_info;
        const unsigned int du_bits = ci->ci_data_unit_bits;
        const unsigned int du_size = 1U << du_bits;
        u64 index = ((u64)folio->index << (PAGE_SHIFT - du_bits)) +
                    (offs >> du_bits);
        size_t i;
        int err;
 
        if (WARN_ON_ONCE(!folio_test_locked(folio)))
                return -EINVAL;
 
@@ -402,28 +402,29 @@ static int __init fscrypt_init(void)
         *
         * Also use a high-priority workqueue to prioritize decryption work,
         * which blocks reads from completing, over regular application tasks.
         */
        fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
                                                 WQ_UNBOUND | WQ_HIGHPRI,
                                                 num_online_cpus());
        if (!fscrypt_read_workqueue)
                goto fail;
 
-       fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
-       if (!fscrypt_info_cachep)
+       fscrypt_inode_info_cachep = KMEM_CACHE(fscrypt_inode_info,
+                                              SLAB_RECLAIM_ACCOUNT);
+       if (!fscrypt_inode_info_cachep)
                goto fail_free_queue;
 
        err = fscrypt_init_keyring();
        if (err)
-               goto fail_free_info;
+               goto fail_free_inode_info;
 
        return 0;
 
-fail_free_info:
-       kmem_cache_destroy(fscrypt_info_cachep);
+fail_free_inode_info:
+       kmem_cache_destroy(fscrypt_inode_info_cachep);
 fail_free_queue:
        destroy_workqueue(fscrypt_read_workqueue);
 fail:
        return err;
 }
 late_initcall(fscrypt_init)
diff --git a/fs/crypto/fname.c b/fs/crypto/fname.c
index 6eae3f12ad503..7b3fc189593a5 100644
--- a/fs/crypto/fname.c
+++ b/fs/crypto/fname.c
@@ -93,21 +93,21 @@ static inline bool fscrypt_is_dot_dotdot(const struct qstr 
*str)
  * @olen: size of the encrypted filename.  It must be at least @iname->len.
  *       Any extra space is filled with NUL padding before encryption.
  *
  * Return: 0 on success, -errno on failure
  */
 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
                          u8 *out, unsigned int olen)
 {
        struct skcipher_request *req = NULL;
        DECLARE_CRYPTO_WAIT(wait);
-       const struct fscrypt_info *ci = inode->i_crypt_info;
+       const struct fscrypt_inode_info *ci = inode->i_crypt_info;
        struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
        union fscrypt_iv iv;
        struct scatterlist sg;
        int res;
 
        /*
         * Copy the filename to the output buffer for encrypting in-place and
         * pad it with the needed number of NUL bytes.
         */
        if (WARN_ON_ONCE(olen < iname->len))
@@ -150,21 +150,21 @@ EXPORT_SYMBOL_GPL(fscrypt_fname_encrypt);
  *
  * Return: 0 on success, -errno on failure
  */
 static int fname_decrypt(const struct inode *inode,
                         const struct fscrypt_str *iname,
                         struct fscrypt_str *oname)
 {
        struct skcipher_request *req = NULL;
        DECLARE_CRYPTO_WAIT(wait);
        struct scatterlist src_sg, dst_sg;
-       const struct fscrypt_info *ci = inode->i_crypt_info;
+       const struct fscrypt_inode_info *ci = inode->i_crypt_info;
        struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
        union fscrypt_iv iv;
        int res;
 
        /* Allocate request */
        req = skcipher_request_alloc(tfm, GFP_NOFS);
        if (!req)
                return -ENOMEM;
        skcipher_request_set_callback(req,
                CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
@@ -561,21 +561,21 @@ EXPORT_SYMBOL_GPL(fscrypt_match_name);
  * @name: the filename to calculate the SipHash of
  *
  * Given a plaintext filename @name and a directory @dir which uses SipHash as
  * its dirhash method and has had its fscrypt key set up, this function
  * calculates the SipHash of that name using the directory's secret dirhash 
key.
  *
  * Return: the SipHash of @name using the hash key of @dir
  */
 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
 {
-       const struct fscrypt_info *ci = dir->i_crypt_info;
+       const struct fscrypt_inode_info *ci = dir->i_crypt_info;
 
        WARN_ON_ONCE(!ci->ci_dirhash_key_initialized);
 
        return siphash(name->name, name->len, &ci->ci_dirhash_key);
 }
 EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
 
 /*
  * Validate dentries in encrypted directories to make sure we aren't 
potentially
  * caching stale dentries after a key has been added.
diff --git a/fs/crypto/fscrypt_private.h b/fs/crypto/fscrypt_private.h
index 9c5e83baa3f12..2fb4ba435d27d 100644
--- a/fs/crypto/fscrypt_private.h
+++ b/fs/crypto/fscrypt_private.h
@@ -203,32 +203,32 @@ struct fscrypt_symlink_data {
  * Normally only one of the fields will be non-NULL.
  */
 struct fscrypt_prepared_key {
        struct crypto_skcipher *tfm;
 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
        struct blk_crypto_key *blk_key;
 #endif
 };
 
 /*
- * fscrypt_info - the "encryption key" for an inode
+ * fscrypt_inode_info - the "encryption key" for an inode
  *
  * When an encrypted file's key is made available, an instance of this struct 
is
  * allocated and stored in ->i_crypt_info.  Once created, it remains until the
  * inode is evicted.
  */
-struct fscrypt_info {
+struct fscrypt_inode_info {
 
        /* The key in a form prepared for actual encryption/decryption */
        struct fscrypt_prepared_key ci_enc_key;
 
-       /* True if ci_enc_key should be freed when this fscrypt_info is freed */
+       /* True if ci_enc_key should be freed when this struct is freed */
        bool ci_owns_key;
 
 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
        /*
         * True if this inode will use inline encryption (blk-crypto) instead of
         * the traditional filesystem-layer encryption.
         */
        bool ci_inlinecrypt;
 #endif
 
@@ -287,23 +287,23 @@ struct fscrypt_info {
        /* Hashed inode number.  Only set for IV_INO_LBLK_32 */
        u32 ci_hashed_ino;
 };
 
 typedef enum {
        FS_DECRYPT = 0,
        FS_ENCRYPT,
 } fscrypt_direction_t;
 
 /* crypto.c */
-extern struct kmem_cache *fscrypt_info_cachep;
+extern struct kmem_cache *fscrypt_inode_info_cachep;
 int fscrypt_initialize(struct super_block *sb);
-int fscrypt_crypt_data_unit(const struct fscrypt_info *ci,
+int fscrypt_crypt_data_unit(const struct fscrypt_inode_info *ci,
                            fscrypt_direction_t rw, u64 index,
                            struct page *src_page, struct page *dest_page,
                            unsigned int len, unsigned int offs,
                            gfp_t gfp_flags);
 struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
 
 void __printf(3, 4) __cold
 fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, 
...);
 
 #define fscrypt_warn(inode, fmt, ...)          \
@@ -319,21 +319,21 @@ union fscrypt_iv {
                __le64 index;
 
                /* per-file nonce; only set in DIRECT_KEY mode */
                u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
        };
        u8 raw[FSCRYPT_MAX_IV_SIZE];
        __le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
 };
 
 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index,
-                        const struct fscrypt_info *ci);
+                        const struct fscrypt_inode_info *ci);
 
 /*
  * Return the number of bits used by the maximum file data unit index that is
  * possible on the given filesystem, using the given log2 data unit size.
  */
 static inline int
 fscrypt_max_file_dun_bits(const struct super_block *sb, int du_bits)
 {
        return fls64(sb->s_maxbytes - 1) - du_bits;
 }
@@ -367,87 +367,87 @@ int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 
*master_key,
 #define HKDF_CONTEXT_INODE_HASH_KEY    7 /* info=<empty>               */
 
 int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
                        const u8 *info, unsigned int infolen,
                        u8 *okm, unsigned int okmlen);
 
 void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
 
 /* inline_crypt.c */
 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
-int fscrypt_select_encryption_impl(struct fscrypt_info *ci);
+int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci);
 
 static inline bool
-fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
+fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
 {
        return ci->ci_inlinecrypt;
 }
 
 int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
                                     const u8 *raw_key,
-                                    const struct fscrypt_info *ci);
+                                    const struct fscrypt_inode_info *ci);
 
 void fscrypt_destroy_inline_crypt_key(struct super_block *sb,
                                      struct fscrypt_prepared_key *prep_key);
 
 /*
  * Check whether the crypto transform or blk-crypto key has been allocated in
  * @prep_key, depending on which encryption implementation the file will use.
  */
 static inline bool
 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
-                       const struct fscrypt_info *ci)
+                       const struct fscrypt_inode_info *ci)
 {
        /*
         * The two smp_load_acquire()'s here pair with the smp_store_release()'s
         * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key().
         * I.e., in some cases (namely, if this prep_key is a per-mode
         * encryption key) another task can publish blk_key or tfm concurrently,
         * executing a RELEASE barrier.  We need to use smp_load_acquire() here
         * to safely ACQUIRE the memory the other task published.
         */
        if (fscrypt_using_inline_encryption(ci))
                return smp_load_acquire(&prep_key->blk_key) != NULL;
        return smp_load_acquire(&prep_key->tfm) != NULL;
 }
 
 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
 
-static inline int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
+static inline int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci)
 {
        return 0;
 }
 
 static inline bool
-fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
+fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
 {
        return false;
 }
 
 static inline int
 fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
                                 const u8 *raw_key,
-                                const struct fscrypt_info *ci)
+                                const struct fscrypt_inode_info *ci)
 {
        WARN_ON_ONCE(1);
        return -EOPNOTSUPP;
 }
 
 static inline void
 fscrypt_destroy_inline_crypt_key(struct super_block *sb,
                                 struct fscrypt_prepared_key *prep_key)
 {
 }
 
 static inline bool
 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
-                       const struct fscrypt_info *ci)
+                       const struct fscrypt_inode_info *ci)
 {
        return smp_load_acquire(&prep_key->tfm) != NULL;
 }
 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
 
 /* keyring.c */
 
 /*
  * fscrypt_master_key_secret - secret key material of an in-use master key
  */
@@ -633,31 +633,32 @@ struct fscrypt_mode {
        int ivsize;             /* IV size in bytes */
        int logged_cryptoapi_impl;
        int logged_blk_crypto_native;
        int logged_blk_crypto_fallback;
        enum blk_crypto_mode_num blk_crypto_mode;
 };
 
 extern struct fscrypt_mode fscrypt_modes[];
 
 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
-                       const u8 *raw_key, const struct fscrypt_info *ci);
+                       const u8 *raw_key, const struct fscrypt_inode_info *ci);
 
 void fscrypt_destroy_prepared_key(struct super_block *sb,
                                  struct fscrypt_prepared_key *prep_key);
 
-int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key);
+int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci,
+                                const u8 *raw_key);
 
-int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
+int fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci,
                               const struct fscrypt_master_key *mk);
 
-void fscrypt_hash_inode_number(struct fscrypt_info *ci,
+void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci,
                               const struct fscrypt_master_key *mk);
 
 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported);
 
 /**
  * fscrypt_require_key() - require an inode's encryption key
  * @inode: the inode we need the key for
  *
  * If the inode is encrypted, set up its encryption key if not already done.
  * Then require that the key be present and return -ENOKEY otherwise.
@@ -678,24 +679,25 @@ static inline int fscrypt_require_key(struct inode *inode)
                if (!fscrypt_has_encryption_key(inode))
                        return -ENOKEY;
        }
        return 0;
 }
 
 /* keysetup_v1.c */
 
 void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
 
-int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
+int fscrypt_setup_v1_file_key(struct fscrypt_inode_info *ci,
                              const u8 *raw_master_key);
 
-int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci);
+int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
+                               struct fscrypt_inode_info *ci);
 
 /* policy.c */
 
 bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
                            const union fscrypt_policy *policy2);
 int fscrypt_policy_to_key_spec(const union fscrypt_policy *policy,
                               struct fscrypt_key_specifier *key_spec);
 const union fscrypt_policy *fscrypt_get_dummy_policy(struct super_block *sb);
 bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
                              const struct inode *inode);
diff --git a/fs/crypto/hooks.c b/fs/crypto/hooks.c
index 6238dbcadcad8..85d2975b69b78 100644
--- a/fs/crypto/hooks.c
+++ b/fs/crypto/hooks.c
@@ -162,21 +162,21 @@ EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr);
  * @flags: the new flags
  *
  * The caller should be holding i_rwsem for write.
  *
  * Return: 0 on success; -errno if the flags change isn't allowed or if
  *        another error occurs.
  */
 int fscrypt_prepare_setflags(struct inode *inode,
                             unsigned int oldflags, unsigned int flags)
 {
-       struct fscrypt_info *ci;
+       struct fscrypt_inode_info *ci;
        struct fscrypt_master_key *mk;
        int err;
 
        /*
         * When the CASEFOLD flag is set on an encrypted directory, we must
         * derive the secret key needed for the dirhash.  This is only possible
         * if the directory uses a v2 encryption policy.
         */
        if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
                err = fscrypt_require_key(inode);
diff --git a/fs/crypto/inline_crypt.c b/fs/crypto/inline_crypt.c
index 8c6d37d6225a8..b4002aea7cdb9 100644
--- a/fs/crypto/inline_crypt.c
+++ b/fs/crypto/inline_crypt.c
@@ -32,21 +32,21 @@ static struct block_device **fscrypt_get_devices(struct 
super_block *sb,
                        return devs;
        }
        devs = kmalloc(sizeof(*devs), GFP_KERNEL);
        if (!devs)
                return ERR_PTR(-ENOMEM);
        devs[0] = sb->s_bdev;
        *num_devs = 1;
        return devs;
 }
 
-static unsigned int fscrypt_get_dun_bytes(const struct fscrypt_info *ci)
+static unsigned int fscrypt_get_dun_bytes(const struct fscrypt_inode_info *ci)
 {
        const struct super_block *sb = ci->ci_inode->i_sb;
        unsigned int flags = fscrypt_policy_flags(&ci->ci_policy);
        int dun_bits;
 
        if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY)
                return offsetofend(union fscrypt_iv, nonce);
 
        if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64)
                return sizeof(__le64);
@@ -82,21 +82,21 @@ static void fscrypt_log_blk_crypto_impl(struct fscrypt_mode 
*mode,
                                pr_info("fscrypt: %s using blk-crypto 
(native)\n",
                                        mode->friendly_name);
                } else if (!xchg(&mode->logged_blk_crypto_fallback, 1)) {
                        pr_info("fscrypt: %s using blk-crypto-fallback\n",
                                mode->friendly_name);
                }
        }
 }
 
 /* Enable inline encryption for this file if supported. */
-int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
+int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci)
 {
        const struct inode *inode = ci->ci_inode;
        struct super_block *sb = inode->i_sb;
        struct blk_crypto_config crypto_cfg;
        struct block_device **devs;
        unsigned int num_devs;
        unsigned int i;
 
        /* The file must need contents encryption, not filenames encryption */
        if (!S_ISREG(inode->i_mode))
@@ -144,21 +144,21 @@ int fscrypt_select_encryption_impl(struct fscrypt_info 
*ci)
 
        ci->ci_inlinecrypt = true;
 out_free_devs:
        kfree(devs);
 
        return 0;
 }
 
 int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
                                     const u8 *raw_key,
-                                    const struct fscrypt_info *ci)
+                                    const struct fscrypt_inode_info *ci)
 {
        const struct inode *inode = ci->ci_inode;
        struct super_block *sb = inode->i_sb;
        enum blk_crypto_mode_num crypto_mode = ci->ci_mode->blk_crypto_mode;
        struct blk_crypto_key *blk_key;
        struct block_device **devs;
        unsigned int num_devs;
        unsigned int i;
        int err;
 
@@ -225,21 +225,22 @@ void fscrypt_destroy_inline_crypt_key(struct super_block 
*sb,
        }
        kfree_sensitive(blk_key);
 }
 
 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
 {
        return inode->i_crypt_info->ci_inlinecrypt;
 }
 EXPORT_SYMBOL_GPL(__fscrypt_inode_uses_inline_crypto);
 
-static void fscrypt_generate_dun(const struct fscrypt_info *ci, u64 lblk_num,
+static void fscrypt_generate_dun(const struct fscrypt_inode_info *ci,
+                                u64 lblk_num,
                                 u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
 {
        u64 index = lblk_num << ci->ci_data_units_per_block_bits;
        union fscrypt_iv iv;
        int i;
 
        fscrypt_generate_iv(&iv, index, ci);
 
        BUILD_BUG_ON(FSCRYPT_MAX_IV_SIZE > BLK_CRYPTO_MAX_IV_SIZE);
        memset(dun, 0, BLK_CRYPTO_MAX_IV_SIZE);
@@ -259,21 +260,21 @@ static void fscrypt_generate_dun(const struct 
fscrypt_info *ci, u64 lblk_num,
  * encryption, then assign the appropriate encryption context to the bio.
  *
  * Normally the bio should be newly allocated (i.e. no pages added yet), as
  * otherwise fscrypt_mergeable_bio() won't work as intended.
  *
  * The encryption context will be freed automatically when the bio is freed.
  */
 void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
                               u64 first_lblk, gfp_t gfp_mask)
 {
-       const struct fscrypt_info *ci;
+       const struct fscrypt_inode_info *ci;
        u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
 
        if (!fscrypt_inode_uses_inline_crypto(inode))
                return;
        ci = inode->i_crypt_info;
 
        fscrypt_generate_dun(ci, first_lblk, dun);
        bio_crypt_set_ctx(bio, ci->ci_enc_key.blk_key, dun, gfp_mask);
 }
 EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx);
@@ -450,21 +451,21 @@ EXPORT_SYMBOL_GPL(fscrypt_dio_supported);
  * In rare cases, fscrypt can be using an IV generation method that allows the
  * DUN to wrap around within logically contiguous blocks, and that wraparound
  * will occur.  If this happens, a value less than @nr_blocks will be returned
  * so that the wraparound doesn't occur in the middle of a bio, which would
  * cause encryption/decryption to produce wrong results.
  *
  * Return: the actual number of blocks that can be submitted
  */
 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks)
 {
-       const struct fscrypt_info *ci;
+       const struct fscrypt_inode_info *ci;
        u32 dun;
 
        if (!fscrypt_inode_uses_inline_crypto(inode))
                return nr_blocks;
 
        if (nr_blocks <= 1)
                return nr_blocks;
 
        ci = inode->i_crypt_info;
        if (!(fscrypt_policy_flags(&ci->ci_policy) &
diff --git a/fs/crypto/keyring.c b/fs/crypto/keyring.c
index 7cbb1fd872acc..a51fa6a33de10 100644
--- a/fs/crypto/keyring.c
+++ b/fs/crypto/keyring.c
@@ -860,21 +860,21 @@ static void shrink_dcache_inode(struct inode *inode)
                if (dentry) {
                        shrink_dcache_parent(dentry);
                        dput(dentry);
                }
        }
        d_prune_aliases(inode);
 }
 
 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
 {
-       struct fscrypt_info *ci;
+       struct fscrypt_inode_info *ci;
        struct inode *inode;
        struct inode *toput_inode = NULL;
 
        spin_lock(&mk->mk_decrypted_inodes_lock);
 
        list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
                inode = ci->ci_inode;
                spin_lock(&inode->i_lock);
                if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
                        spin_unlock(&inode->i_lock);
@@ -910,21 +910,21 @@ static int check_for_busy_inodes(struct super_block *sb,
 
        if (busy_count == 0) {
                spin_unlock(&mk->mk_decrypted_inodes_lock);
                return 0;
        }
 
        {
                /* select an example file to show for debugging purposes */
                struct inode *inode =
                        list_first_entry(&mk->mk_decrypted_inodes,
-                                        struct fscrypt_info,
+                                        struct fscrypt_inode_info,
                                         ci_master_key_link)->ci_inode;
                ino = inode->i_ino;
        }
        spin_unlock(&mk->mk_decrypted_inodes_lock);
 
        /* If the inode is currently being created, ino may still be 0. */
        if (ino)
                snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
 
        fscrypt_warn(NULL,
diff --git a/fs/crypto/keysetup.c b/fs/crypto/keysetup.c
index 608599f8aa574..094d1b7a1ae61 100644
--- a/fs/crypto/keysetup.c
+++ b/fs/crypto/keysetup.c
@@ -141,21 +141,21 @@ fscrypt_allocate_skcipher(struct fscrypt_mode *mode, 
const u8 *raw_key,
        return ERR_PTR(err);
 }
 
 /*
  * Prepare the crypto transform object or blk-crypto key in @prep_key, given 
the
  * raw key, encryption mode (@ci->ci_mode), flag indicating which encryption
  * implementation (fs-layer or blk-crypto) will be used (@ci->ci_inlinecrypt),
  * and IV generation method (@ci->ci_policy.flags).
  */
 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
-                       const u8 *raw_key, const struct fscrypt_info *ci)
+                       const u8 *raw_key, const struct fscrypt_inode_info *ci)
 {
        struct crypto_skcipher *tfm;
 
        if (fscrypt_using_inline_encryption(ci))
                return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci);
 
        tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
        if (IS_ERR(tfm))
                return PTR_ERR(tfm);
        /*
@@ -171,27 +171,28 @@ int fscrypt_prepare_key(struct fscrypt_prepared_key 
*prep_key,
 /* Destroy a crypto transform object and/or blk-crypto key. */
 void fscrypt_destroy_prepared_key(struct super_block *sb,
                                  struct fscrypt_prepared_key *prep_key)
 {
        crypto_free_skcipher(prep_key->tfm);
        fscrypt_destroy_inline_crypt_key(sb, prep_key);
        memzero_explicit(prep_key, sizeof(*prep_key));
 }
 
 /* Given a per-file encryption key, set up the file's crypto transform object 
*/
-int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
+int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci,
+                                const u8 *raw_key)
 {
        ci->ci_owns_key = true;
        return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci);
 }
 
-static int setup_per_mode_enc_key(struct fscrypt_info *ci,
+static int setup_per_mode_enc_key(struct fscrypt_inode_info *ci,
                                  struct fscrypt_master_key *mk,
                                  struct fscrypt_prepared_key *keys,
                                  u8 hkdf_context, bool include_fs_uuid)
 {
        const struct inode *inode = ci->ci_inode;
        const struct super_block *sb = inode->i_sb;
        struct fscrypt_mode *mode = ci->ci_mode;
        const u8 mode_num = mode - fscrypt_modes;
        struct fscrypt_prepared_key *prep_key;
        u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
@@ -258,45 +259,45 @@ static int fscrypt_derive_siphash_key(const struct 
fscrypt_master_key *mk,
        if (err)
                return err;
 
        BUILD_BUG_ON(sizeof(*key) != 16);
        BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2);
        le64_to_cpus(&key->key[0]);
        le64_to_cpus(&key->key[1]);
        return 0;
 }
 
-int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
+int fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci,
                               const struct fscrypt_master_key *mk)
 {
        int err;
 
        err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY,
                                         ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
                                         &ci->ci_dirhash_key);
        if (err)
                return err;
        ci->ci_dirhash_key_initialized = true;
        return 0;
 }
 
-void fscrypt_hash_inode_number(struct fscrypt_info *ci,
+void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci,
                               const struct fscrypt_master_key *mk)
 {
        WARN_ON_ONCE(ci->ci_inode->i_ino == 0);
        WARN_ON_ONCE(!mk->mk_ino_hash_key_initialized);
 
        ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
                                              &mk->mk_ino_hash_key);
 }
 
-static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
+static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_inode_info *ci,
                                            struct fscrypt_master_key *mk)
 {
        int err;
 
        err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
                                     HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
        if (err)
                return err;
 
        /* pairs with smp_store_release() below */
@@ -322,21 +323,21 @@ static int fscrypt_setup_iv_ino_lblk_32_key(struct 
fscrypt_info *ci,
 
        /*
         * New inodes may not have an inode number assigned yet.
         * Hashing their inode number is delayed until later.
         */
        if (ci->ci_inode->i_ino)
                fscrypt_hash_inode_number(ci, mk);
        return 0;
 }
 
-static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
+static int fscrypt_setup_v2_file_key(struct fscrypt_inode_info *ci,
                                     struct fscrypt_master_key *mk,
                                     bool need_dirhash_key)
 {
        int err;
 
        if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
                /*
                 * DIRECT_KEY: instead of deriving per-file encryption keys, the
                 * per-file nonce will be included in all the IVs.  But unlike
                 * v1 policies, for v2 policies in this case we don't encrypt
@@ -397,21 +398,21 @@ static int fscrypt_setup_v2_file_key(struct fscrypt_info 
*ci,
  * requirement: we require that the size of the master key be at least the
  * maximum security strength of any algorithm whose key will be derived from it
  * (but in practice we only need to consider @ci->ci_mode, since any other
  * possible subkeys such as DIRHASH and INODE_HASH will never increase the
  * required key size over @ci->ci_mode).  This allows AES-256-XTS keys to be
  * derived from a 256-bit master key, which is cryptographically sufficient,
  * rather than requiring a 512-bit master key which is unnecessarily long.  (We
  * still allow 512-bit master keys if the user chooses to use them, though.)
  */
 static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk,
-                                         const struct fscrypt_info *ci)
+                                         const struct fscrypt_inode_info *ci)
 {
        unsigned int min_keysize;
 
        if (ci->ci_policy.version == FSCRYPT_POLICY_V1)
                min_keysize = ci->ci_mode->keysize;
        else
                min_keysize = ci->ci_mode->security_strength;
 
        if (mk->mk_secret.size < min_keysize) {
                fscrypt_warn(NULL,
@@ -423,25 +424,26 @@ static bool fscrypt_valid_master_key_size(const struct 
fscrypt_master_key *mk,
                return false;
        }
        return true;
 }
 
 /*
  * Find the master key, then set up the inode's actual encryption key.
  *
  * If the master key is found in the filesystem-level keyring, then it is
  * returned in *mk_ret with its semaphore read-locked.  This is needed to 
ensure
- * that only one task links the fscrypt_info into ->mk_decrypted_inodes (as
- * multiple tasks may race to create an fscrypt_info for the same inode), and 
to
- * synchronize the master key being removed with a new inode starting to use 
it.
+ * that only one task links the fscrypt_inode_info into ->mk_decrypted_inodes
+ * (as multiple tasks may race to create an fscrypt_inode_info for the same
+ * inode), and to synchronize the master key being removed with a new inode
+ * starting to use it.
  */
-static int setup_file_encryption_key(struct fscrypt_info *ci,
+static int setup_file_encryption_key(struct fscrypt_inode_info *ci,
                                     bool need_dirhash_key,
                                     struct fscrypt_master_key **mk_ret)
 {
        struct super_block *sb = ci->ci_inode->i_sb;
        struct fscrypt_key_specifier mk_spec;
        struct fscrypt_master_key *mk;
        int err;
 
        err = fscrypt_select_encryption_impl(ci);
        if (err)
@@ -512,21 +514,21 @@ static int setup_file_encryption_key(struct fscrypt_info 
*ci,
 
        *mk_ret = mk;
        return 0;
 
 out_release_key:
        up_read(&mk->mk_sem);
        fscrypt_put_master_key(mk);
        return err;
 }
 
-static void put_crypt_info(struct fscrypt_info *ci)
+static void put_crypt_info(struct fscrypt_inode_info *ci)
 {
        struct fscrypt_master_key *mk;
 
        if (!ci)
                return;
 
        if (ci->ci_direct_key)
                fscrypt_put_direct_key(ci->ci_direct_key);
        else if (ci->ci_owns_key)
                fscrypt_destroy_prepared_key(ci->ci_inode->i_sb,
@@ -539,39 +541,39 @@ static void put_crypt_info(struct fscrypt_info *ci)
                 * with the master key.  In addition, if we're removing the last
                 * inode from a master key struct that already had its secret
                 * removed, then complete the full removal of the struct.
                 */
                spin_lock(&mk->mk_decrypted_inodes_lock);
                list_del(&ci->ci_master_key_link);
                spin_unlock(&mk->mk_decrypted_inodes_lock);
                fscrypt_put_master_key_activeref(ci->ci_inode->i_sb, mk);
        }
        memzero_explicit(ci, sizeof(*ci));
-       kmem_cache_free(fscrypt_info_cachep, ci);
+       kmem_cache_free(fscrypt_inode_info_cachep, ci);
 }
 
 static int
 fscrypt_setup_encryption_info(struct inode *inode,
                              const union fscrypt_policy *policy,
                              const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
                              bool need_dirhash_key)
 {
-       struct fscrypt_info *crypt_info;
+       struct fscrypt_inode_info *crypt_info;
        struct fscrypt_mode *mode;
        struct fscrypt_master_key *mk = NULL;
        int res;
 
        res = fscrypt_initialize(inode->i_sb);
        if (res)
                return res;
 
-       crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL);
+       crypt_info = kmem_cache_zalloc(fscrypt_inode_info_cachep, GFP_KERNEL);
        if (!crypt_info)
                return -ENOMEM;
 
        crypt_info->ci_inode = inode;
        crypt_info->ci_policy = *policy;
        memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE);
 
        mode = select_encryption_mode(&crypt_info->ci_policy, inode);
        if (IS_ERR(mode)) {
                res = PTR_ERR(mode);
@@ -585,22 +587,22 @@ fscrypt_setup_encryption_info(struct inode *inode,
        crypt_info->ci_data_units_per_block_bits =
                inode->i_blkbits - crypt_info->ci_data_unit_bits;
 
        res = setup_file_encryption_key(crypt_info, need_dirhash_key, &mk);
        if (res)
                goto out;
 
        /*
         * For existing inodes, multiple tasks may race to set ->i_crypt_info.
         * So use cmpxchg_release().  This pairs with the smp_load_acquire() in
-        * fscrypt_get_info().  I.e., here we publish ->i_crypt_info with a
-        * RELEASE barrier so that other tasks can ACQUIRE it.
+        * fscrypt_get_inode_info().  I.e., here we publish ->i_crypt_info with
+        * a RELEASE barrier so that other tasks can ACQUIRE it.
         */
        if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
                /*
                 * We won the race and set ->i_crypt_info to our crypt_info.
                 * Now link it into the master key's inode list.
                 */
                if (mk) {
                        crypt_info->ci_master_key = mk;
                        refcount_inc(&mk->mk_active_refs);
                        spin_lock(&mk->mk_decrypted_inodes_lock);
@@ -733,22 +735,22 @@ int fscrypt_prepare_new_inode(struct inode *dir, struct 
inode *inode,
        return fscrypt_setup_encryption_info(inode, policy, nonce,
                                             IS_CASEFOLDED(dir) &&
                                             S_ISDIR(inode->i_mode));
 }
 EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode);
 
 /**
  * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
  * @inode: an inode being evicted
  *
- * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
- * being evicted.  An RCU grace period need not have elapsed yet.
+ * Free the inode's fscrypt_inode_info.  Filesystems must call this when the
+ * inode is being evicted.  An RCU grace period need not have elapsed yet.
  */
 void fscrypt_put_encryption_info(struct inode *inode)
 {
        put_crypt_info(inode->i_crypt_info);
        inode->i_crypt_info = NULL;
 }
 EXPORT_SYMBOL(fscrypt_put_encryption_info);
 
 /**
  * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
@@ -771,21 +773,21 @@ EXPORT_SYMBOL(fscrypt_free_inode);
  * @inode: an inode being considered for eviction
  *
  * Filesystems supporting fscrypt must call this from their ->drop_inode()
  * method so that encrypted inodes are evicted as soon as they're no longer in
  * use and their master key has been removed.
  *
  * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
  */
 int fscrypt_drop_inode(struct inode *inode)
 {
-       const struct fscrypt_info *ci = fscrypt_get_info(inode);
+       const struct fscrypt_inode_info *ci = fscrypt_get_inode_info(inode);
 
        /*
         * If ci is NULL, then the inode doesn't have an encryption key set up
         * so it's irrelevant.  If ci_master_key is NULL, then the master key
         * was provided via the legacy mechanism of the process-subscribed
         * keyrings, so we don't know whether it's been removed or not.
         */
        if (!ci || !ci->ci_master_key)
                return 0;
 
diff --git a/fs/crypto/keysetup_v1.c b/fs/crypto/keysetup_v1.c
index 86b48a2b47d1b..a10710bc81230 100644
--- a/fs/crypto/keysetup_v1.c
+++ b/fs/crypto/keysetup_v1.c
@@ -171,21 +171,22 @@ void fscrypt_put_direct_key(struct fscrypt_direct_key *dk)
 }
 
 /*
  * Find/insert the given key into the fscrypt_direct_keys table.  If found, it
  * is returned with elevated refcount, and 'to_insert' is freed if non-NULL.  
If
  * not found, 'to_insert' is inserted and returned if it's non-NULL; otherwise
  * NULL is returned.
  */
 static struct fscrypt_direct_key *
 find_or_insert_direct_key(struct fscrypt_direct_key *to_insert,
-                         const u8 *raw_key, const struct fscrypt_info *ci)
+                         const u8 *raw_key,
+                         const struct fscrypt_inode_info *ci)
 {
        unsigned long hash_key;
        struct fscrypt_direct_key *dk;
 
        /*
         * Careful: to avoid potentially leaking secret key bytes via timing
         * information, we must key the hash table by descriptor rather than by
         * raw key, and use crypto_memneq() when comparing raw keys.
         */
 
@@ -211,21 +212,21 @@ find_or_insert_direct_key(struct fscrypt_direct_key 
*to_insert,
                return dk;
        }
        if (to_insert)
                hash_add(fscrypt_direct_keys, &to_insert->dk_node, hash_key);
        spin_unlock(&fscrypt_direct_keys_lock);
        return to_insert;
 }
 
 /* Prepare to encrypt directly using the master key in the given mode */
 static struct fscrypt_direct_key *
-fscrypt_get_direct_key(const struct fscrypt_info *ci, const u8 *raw_key)
+fscrypt_get_direct_key(const struct fscrypt_inode_info *ci, const u8 *raw_key)
 {
        struct fscrypt_direct_key *dk;
        int err;
 
        /* Is there already a tfm for this key? */
        dk = find_or_insert_direct_key(NULL, raw_key, ci);
        if (dk)
                return dk;
 
        /* Nope, allocate one. */
@@ -243,35 +244,35 @@ fscrypt_get_direct_key(const struct fscrypt_info *ci, 
const u8 *raw_key)
        memcpy(dk->dk_raw, raw_key, ci->ci_mode->keysize);
 
        return find_or_insert_direct_key(dk, raw_key, ci);
 
 err_free_dk:
        free_direct_key(dk);
        return ERR_PTR(err);
 }
 
 /* v1 policy, DIRECT_KEY: use the master key directly */
-static int setup_v1_file_key_direct(struct fscrypt_info *ci,
+static int setup_v1_file_key_direct(struct fscrypt_inode_info *ci,
                                    const u8 *raw_master_key)
 {
        struct fscrypt_direct_key *dk;
 
        dk = fscrypt_get_direct_key(ci, raw_master_key);
        if (IS_ERR(dk))
                return PTR_ERR(dk);
        ci->ci_direct_key = dk;
        ci->ci_enc_key = dk->dk_key;
        return 0;
 }
 
 /* v1 policy, !DIRECT_KEY: derive the file's encryption key */
-static int setup_v1_file_key_derived(struct fscrypt_info *ci,
+static int setup_v1_file_key_derived(struct fscrypt_inode_info *ci,
                                     const u8 *raw_master_key)
 {
        u8 *derived_key;
        int err;
 
        /*
         * This cannot be a stack buffer because it will be passed to the
         * scatterlist crypto API during derive_key_aes().
         */
        derived_key = kmalloc(ci->ci_mode->keysize, GFP_KERNEL);
@@ -282,29 +283,31 @@ static int setup_v1_file_key_derived(struct fscrypt_info 
*ci,
                             derived_key, ci->ci_mode->keysize);
        if (err)
                goto out;
 
        err = fscrypt_set_per_file_enc_key(ci, derived_key);
 out:
        kfree_sensitive(derived_key);
        return err;
 }
 
-int fscrypt_setup_v1_file_key(struct fscrypt_info *ci, const u8 
*raw_master_key)
+int fscrypt_setup_v1_file_key(struct fscrypt_inode_info *ci,
+                             const u8 *raw_master_key)
 {
        if (ci->ci_policy.v1.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY)
                return setup_v1_file_key_direct(ci, raw_master_key);
        else
                return setup_v1_file_key_derived(ci, raw_master_key);
 }
 
-int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci)
+int
+fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_inode_info 
*ci)
 {
        const struct super_block *sb = ci->ci_inode->i_sb;
        struct key *key;
        const struct fscrypt_key *payload;
        int err;
 
        key = find_and_lock_process_key(FSCRYPT_KEY_DESC_PREFIX,
                                        ci->ci_policy.v1.master_key_descriptor,
                                        ci->ci_mode->keysize, &payload);
        if (key == ERR_PTR(-ENOKEY) && sb->s_cop->legacy_key_prefix) {
diff --git a/fs/crypto/policy.c b/fs/crypto/policy.c
index 2fb3f6a1258e0..701259991277e 100644
--- a/fs/crypto/policy.c
+++ b/fs/crypto/policy.c
@@ -425,25 +425,25 @@ int fscrypt_policy_from_context(union fscrypt_policy 
*policy_u,
                return 0;
        }
        }
        /* unreachable */
        return -EINVAL;
 }
 
 /* Retrieve an inode's encryption policy */
 static int fscrypt_get_policy(struct inode *inode, union fscrypt_policy 
*policy)
 {
-       const struct fscrypt_info *ci;
+       const struct fscrypt_inode_info *ci;
        union fscrypt_context ctx;
        int ret;
 
-       ci = fscrypt_get_info(inode);
+       ci = fscrypt_get_inode_info(inode);
        if (ci) {
                /* key available, use the cached policy */
                *policy = ci->ci_policy;
                return 0;
        }
 
        if (!IS_ENCRYPTED(inode))
                return -ENODATA;
 
        ret = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
@@ -667,21 +667,21 @@ int fscrypt_has_permitted_context(struct inode *parent, 
struct inode *child)
        /* No restrictions if the parent directory is unencrypted */
        if (!IS_ENCRYPTED(parent))
                return 1;
 
        /* Encrypted directories must not contain unencrypted files */
        if (!IS_ENCRYPTED(child))
                return 0;
 
        /*
         * Both parent and child are encrypted, so verify they use the same
-        * encryption policy.  Compare the fscrypt_info structs if the keys are
+        * encryption policy.  Compare the cached policies if the keys are
         * available, otherwise retrieve and compare the fscrypt_contexts.
         *
         * Note that the fscrypt_context retrieval will be required frequently
         * when accessing an encrypted directory tree without the key.
         * Performance-wise this is not a big deal because we already don't
         * really optimize for file access without the key (to the extent that
         * such access is even possible), given that any attempted access
         * already causes a fscrypt_context retrieval and keyring search.
         *
         * In any case, if an unexpected error occurs, fall back to "forbidden".
@@ -737,21 +737,21 @@ const union fscrypt_policy 
*fscrypt_policy_to_inherit(struct inode *dir)
  * @inode: inode from which to fetch policy and nonce
  *
  * Given an in-core "prepared" (via fscrypt_prepare_new_inode) inode,
  * generate a new context and write it to ctx. ctx _must_ be at least
  * FSCRYPT_SET_CONTEXT_MAX_SIZE bytes.
  *
  * Return: size of the resulting context or a negative error code.
  */
 int fscrypt_context_for_new_inode(void *ctx, struct inode *inode)
 {
-       struct fscrypt_info *ci = inode->i_crypt_info;
+       struct fscrypt_inode_info *ci = inode->i_crypt_info;
 
        BUILD_BUG_ON(sizeof(union fscrypt_context) !=
                        FSCRYPT_SET_CONTEXT_MAX_SIZE);
 
        /* fscrypt_prepare_new_inode() should have set up the key already. */
        if (WARN_ON_ONCE(!ci))
                return -ENOKEY;
 
        return fscrypt_new_context(ctx, &ci->ci_policy, ci->ci_nonce);
 }
@@ -762,21 +762,21 @@ EXPORT_SYMBOL_GPL(fscrypt_context_for_new_inode);
  * @inode: a new inode
  * @fs_data: private data given by FS and passed to ->set_context()
  *
  * This should be called after fscrypt_prepare_new_inode(), generally during a
  * filesystem transaction.  Everything here must be %GFP_NOFS-safe.
  *
  * Return: 0 on success, -errno on failure
  */
 int fscrypt_set_context(struct inode *inode, void *fs_data)
 {
-       struct fscrypt_info *ci = inode->i_crypt_info;
+       struct fscrypt_inode_info *ci = inode->i_crypt_info;
        union fscrypt_context ctx;
        int ctxsize;
 
        ctxsize = fscrypt_context_for_new_inode(&ctx, inode);
        if (ctxsize < 0)
                return ctxsize;
 
        /*
         * This may be the first time the inode number is available, so do any
         * delayed key setup that requires the inode number.
diff --git a/include/linux/fs.h b/include/linux/fs.h
index b528f063e8ffa..a3df96736473a 100644
--- a/include/linux/fs.h
+++ b/include/linux/fs.h
@@ -60,21 +60,21 @@ struct kobject;
 struct pipe_inode_info;
 struct poll_table_struct;
 struct kstatfs;
 struct vm_area_struct;
 struct vfsmount;
 struct cred;
 struct swap_info_struct;
 struct seq_file;
 struct workqueue_struct;
 struct iov_iter;
-struct fscrypt_info;
+struct fscrypt_inode_info;
 struct fscrypt_operations;
 struct fsverity_info;
 struct fsverity_operations;
 struct fs_context;
 struct fs_parameter_spec;
 struct fileattr;
 struct iomap_ops;
 
 extern void __init inode_init(void);
 extern void __init inode_init_early(void);
@@ -731,21 +731,21 @@ struct inode {
        };
 
        __u32                   i_generation;
 
 #ifdef CONFIG_FSNOTIFY
        __u32                   i_fsnotify_mask; /* all events this inode cares 
about */
        struct fsnotify_mark_connector __rcu    *i_fsnotify_marks;
 #endif
 
 #ifdef CONFIG_FS_ENCRYPTION
-       struct fscrypt_info     *i_crypt_info;
+       struct fscrypt_inode_info       *i_crypt_info;
 #endif
 
 #ifdef CONFIG_FS_VERITY
        struct fsverity_info    *i_verity_info;
 #endif
 
        void                    *i_private; /* fs or device private pointer */
 } __randomize_layout;
 
 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode);
diff --git a/include/linux/fscrypt.h b/include/linux/fscrypt.h
index b559e6f777070..12f9e455d569f 100644
--- a/include/linux/fscrypt.h
+++ b/include/linux/fscrypt.h
@@ -24,21 +24,21 @@
  * some of the supported modes don't support arbitrarily byte-aligned messages.
  *
  * Since the needed alignment is 16 bytes, most filesystems will meet this
  * requirement naturally, as typical block sizes are powers of 2.  However, if 
a
  * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via
  * compression), then it will need to pad to this alignment before encryption.
  */
 #define FSCRYPT_CONTENTS_ALIGNMENT 16
 
 union fscrypt_policy;
-struct fscrypt_info;
+struct fscrypt_inode_info;
 struct fs_parameter;
 struct seq_file;
 
 struct fscrypt_str {
        unsigned char *name;
        u32 len;
 };
 
 struct fscrypt_name {
        const struct qstr *usr_fname;
@@ -185,21 +185,22 @@ struct fscrypt_operations {
         *
         * If the filesystem can use multiple block devices (other than block
         * devices that aren't used for encrypted file contents, such as
         * external journal devices), and wants to support inline encryption,
         * then it must implement this function.  Otherwise it's not needed.
         */
        struct block_device **(*get_devices)(struct super_block *sb,
                                             unsigned int *num_devs);
 };
 
-static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
+static inline struct fscrypt_inode_info *
+fscrypt_get_inode_info(const struct inode *inode)
 {
        /*
         * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
         * I.e., another task may publish ->i_crypt_info concurrently, executing
         * a RELEASE barrier.  We need to use smp_load_acquire() here to safely
         * ACQUIRE the memory the other task published.
         */
        return smp_load_acquire(&inode->i_crypt_info);
 }
 
@@ -397,21 +398,22 @@ const char *fscrypt_get_symlink(struct inode *inode, 
const void *caddr,
                                unsigned int max_size,
                                struct delayed_call *done);
 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
 static inline void fscrypt_set_ops(struct super_block *sb,
                                   const struct fscrypt_operations *s_cop)
 {
        sb->s_cop = s_cop;
 }
 #else  /* !CONFIG_FS_ENCRYPTION */
 
-static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
+static inline struct fscrypt_inode_info *
+fscrypt_get_inode_info(const struct inode *inode)
 {
        return NULL;
 }
 
 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
 {
        return false;
 }
 
 static inline void fscrypt_handle_d_move(struct dentry *dentry)
@@ -875,21 +877,21 @@ static inline bool 
fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
  * fscrypt_has_encryption_key() - check whether an inode has had its key set up
  * @inode: the inode to check
  *
  * Return: %true if the inode has had its encryption key set up, else %false.
  *
  * Usually this should be preceded by fscrypt_get_encryption_info() to try to
  * set up the key first.
  */
 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
 {
-       return fscrypt_get_info(inode) != NULL;
+       return fscrypt_get_inode_info(inode) != NULL;
 }
 
 /**
  * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
  *                         directory
  * @old_dentry: an existing dentry for the inode being linked
  * @dir: the target directory
  * @dentry: negative dentry for the target filename
  *
  * A new link can only be added to an encrypted directory if the directory's

base-commit: 5b11888471806edf699316d4dcb9b426caebbef2
-- 
2.42.0

Reply via email to