From: Eric Biggers <ebigg...@google.com>

Optimize ChaCha20 NEON performance by:

- Implementing the 8-bit rotations using the 'vtbl.8' instruction.
- Streamlining the part that adds the original state and XORs the data.
- Making some other small tweaks.

On ARM Cortex-A7, these optimizations improve ChaCha20 performance from
about 11.9 cycles per byte to 11.3.

There is a tradeoff involved with the 'vtbl.8' rotation method since
there is at least one CPU where it's not fastest.  But it seems to be a
better default; see the added comment.

Signed-off-by: Eric Biggers <ebigg...@google.com>
---
 arch/arm/crypto/chacha20-neon-core.S | 289 ++++++++++++++-------------
 1 file changed, 147 insertions(+), 142 deletions(-)

diff --git a/arch/arm/crypto/chacha20-neon-core.S 
b/arch/arm/crypto/chacha20-neon-core.S
index 3fecb2124c35a..d381cebaba31d 100644
--- a/arch/arm/crypto/chacha20-neon-core.S
+++ b/arch/arm/crypto/chacha20-neon-core.S
@@ -18,6 +18,33 @@
  * (at your option) any later version.
  */
 
+ /*
+  * NEON doesn't have a rotate instruction.  The alternatives are, more or 
less:
+  *
+  * (a)  vshl.u32 + vsri.u32           (needs temporary register)
+  * (b)  vshl.u32 + vshr.u32 + vorr    (needs temporary register)
+  * (c)  vrev32.16                     (16-bit rotations only)
+  * (d)  vtbl.8 + vtbl.8               (multiple of 8 bits rotations only,
+  *                                     needs index vector)
+  *
+  * ChaCha20 has 16, 12, 8, and 7-bit rotations.  For the 12 and 7-bit
+  * rotations, the only choices are (a) and (b).  We use (a) since it takes
+  * two-thirds the cycles of (b) on both Cortex-A7 and Cortex-A53.
+  *
+  * For the 16-bit rotation, we use vrev32.16 since it's consistently fastest
+  * and doesn't need a temporary register.
+  *
+  * For the 8-bit rotation, we use vtbl.8 + vtbl.8.  On Cortex-A7, this 
sequence
+  * is twice as fast as (a), even when doing (a) on multiple registers
+  * simultaneously to eliminate the stall between vshl and vsri.  Also, it
+  * parallelizes better when temporary registers are scarce.
+  *
+  * A disadvantage is that on Cortex-A53, the vtbl sequence is the same speed 
as
+  * (a), so the need to load the rotation table actually makes the vtbl method
+  * slightly slower overall on that CPU.  Still, it seems to be a good
+  * compromise to get a significant speed boost on some CPUs.
+  */
+
 #include <linux/linkage.h>
 
        .text
@@ -46,6 +73,9 @@ ENTRY(chacha20_block_xor_neon)
        vmov            q10, q2
        vmov            q11, q3
 
+       ldr             ip, =.Lrol8_table
+       vld1.8          {d10}, [ip, :64]
+
        mov             r3, #10
 
 .Ldoubleround:
@@ -63,9 +93,9 @@ ENTRY(chacha20_block_xor_neon)
 
        // x0 += x1, x3 = rotl32(x3 ^ x0, 8)
        vadd.i32        q0, q0, q1
-       veor            q4, q3, q0
-       vshl.u32        q3, q4, #8
-       vsri.u32        q3, q4, #24
+       veor            q3, q3, q0
+       vtbl.8          d6, {d6}, d10
+       vtbl.8          d7, {d7}, d10
 
        // x2 += x3, x1 = rotl32(x1 ^ x2, 7)
        vadd.i32        q2, q2, q3
@@ -94,9 +124,9 @@ ENTRY(chacha20_block_xor_neon)
 
        // x0 += x1, x3 = rotl32(x3 ^ x0, 8)
        vadd.i32        q0, q0, q1
-       veor            q4, q3, q0
-       vshl.u32        q3, q4, #8
-       vsri.u32        q3, q4, #24
+       veor            q3, q3, q0
+       vtbl.8          d6, {d6}, d10
+       vtbl.8          d7, {d7}, d10
 
        // x2 += x3, x1 = rotl32(x1 ^ x2, 7)
        vadd.i32        q2, q2, q3
@@ -143,11 +173,11 @@ ENDPROC(chacha20_block_xor_neon)
 
        .align          5
 ENTRY(chacha20_4block_xor_neon)
-       push            {r4-r6, lr}
-       mov             ip, sp                  // preserve the stack pointer
-       sub             r3, sp, #0x20           // allocate a 32 byte buffer
-       bic             r3, r3, #0x1f           // aligned to 32 bytes
-       mov             sp, r3
+       push            {r4}
+       mov             r4, sp                  // preserve the stack pointer
+       sub             ip, sp, #0x20           // allocate a 32 byte buffer
+       bic             ip, ip, #0x1f           // aligned to 32 bytes
+       mov             sp, ip
 
        // r0: Input state matrix, s
        // r1: 4 data blocks output, o
@@ -157,25 +187,24 @@ ENTRY(chacha20_4block_xor_neon)
        // This function encrypts four consecutive ChaCha20 blocks by loading
        // the state matrix in NEON registers four times. The algorithm performs
        // each operation on the corresponding word of each state matrix, hence
-       // requires no word shuffling. For final XORing step we transpose the
-       // matrix by interleaving 32- and then 64-bit words, which allows us to
-       // do XOR in NEON registers.
+       // requires no word shuffling. The words are re-interleaved before the
+       // final addition of the original state and the XORing step.
        //
 
-       // x0..15[0-3] = s0..3[0..3]
-       add             r3, r0, #0x20
+       // x0..15[0-3] = s0..15[0-3]
+       add             ip, r0, #0x20
        vld1.32         {q0-q1}, [r0]
-       vld1.32         {q2-q3}, [r3]
+       vld1.32         {q2-q3}, [ip]
 
-       adr             r3, CTRINC
+       adr             ip, .Lctrinc1
        vdup.32         q15, d7[1]
        vdup.32         q14, d7[0]
-       vld1.32         {q11}, [r3, :128]
+       vld1.32         {q4}, [ip, :128]
        vdup.32         q13, d6[1]
        vdup.32         q12, d6[0]
-       vadd.i32        q12, q12, q11           // x12 += counter values 0-3
        vdup.32         q11, d5[1]
        vdup.32         q10, d5[0]
+       vadd.u32        q12, q12, q4            // x12 += counter values 0-3
        vdup.32         q9, d4[1]
        vdup.32         q8, d4[0]
        vdup.32         q7, d3[1]
@@ -187,6 +216,7 @@ ENTRY(chacha20_4block_xor_neon)
        vdup.32         q1, d0[1]
        vdup.32         q0, d0[0]
 
+       adr             ip, .Lrol8_table
        mov             r3, #10
 
 .Ldoubleround4:
@@ -238,24 +268,25 @@ ENTRY(chacha20_4block_xor_neon)
        // x1 += x5, x13 = rotl32(x13 ^ x1, 8)
        // x2 += x6, x14 = rotl32(x14 ^ x2, 8)
        // x3 += x7, x15 = rotl32(x15 ^ x3, 8)
+       vld1.8          {d16}, [ip, :64]
        vadd.i32        q0, q0, q4
        vadd.i32        q1, q1, q5
        vadd.i32        q2, q2, q6
        vadd.i32        q3, q3, q7
 
-       veor            q8, q12, q0
-       veor            q9, q13, q1
-       vshl.u32        q12, q8, #8
-       vshl.u32        q13, q9, #8
-       vsri.u32        q12, q8, #24
-       vsri.u32        q13, q9, #24
+       veor            q12, q12, q0
+       veor            q13, q13, q1
+       veor            q14, q14, q2
+       veor            q15, q15, q3
 
-       veor            q8, q14, q2
-       veor            q9, q15, q3
-       vshl.u32        q14, q8, #8
-       vshl.u32        q15, q9, #8
-       vsri.u32        q14, q8, #24
-       vsri.u32        q15, q9, #24
+       vtbl.8          d24, {d24}, d16
+       vtbl.8          d25, {d25}, d16
+       vtbl.8          d26, {d26}, d16
+       vtbl.8          d27, {d27}, d16
+       vtbl.8          d28, {d28}, d16
+       vtbl.8          d29, {d29}, d16
+       vtbl.8          d30, {d30}, d16
+       vtbl.8          d31, {d31}, d16
 
        vld1.32         {q8-q9}, [sp, :256]
 
@@ -334,24 +365,25 @@ ENTRY(chacha20_4block_xor_neon)
        // x1 += x6, x12 = rotl32(x12 ^ x1, 8)
        // x2 += x7, x13 = rotl32(x13 ^ x2, 8)
        // x3 += x4, x14 = rotl32(x14 ^ x3, 8)
+       vld1.8          {d16}, [ip, :64]
        vadd.i32        q0, q0, q5
        vadd.i32        q1, q1, q6
        vadd.i32        q2, q2, q7
        vadd.i32        q3, q3, q4
 
-       veor            q8, q15, q0
-       veor            q9, q12, q1
-       vshl.u32        q15, q8, #8
-       vshl.u32        q12, q9, #8
-       vsri.u32        q15, q8, #24
-       vsri.u32        q12, q9, #24
+       veor            q15, q15, q0
+       veor            q12, q12, q1
+       veor            q13, q13, q2
+       veor            q14, q14, q3
 
-       veor            q8, q13, q2
-       veor            q9, q14, q3
-       vshl.u32        q13, q8, #8
-       vshl.u32        q14, q9, #8
-       vsri.u32        q13, q8, #24
-       vsri.u32        q14, q9, #24
+       vtbl.8          d30, {d30}, d16
+       vtbl.8          d31, {d31}, d16
+       vtbl.8          d24, {d24}, d16
+       vtbl.8          d25, {d25}, d16
+       vtbl.8          d26, {d26}, d16
+       vtbl.8          d27, {d27}, d16
+       vtbl.8          d28, {d28}, d16
+       vtbl.8          d29, {d29}, d16
 
        vld1.32         {q8-q9}, [sp, :256]
 
@@ -381,104 +413,74 @@ ENTRY(chacha20_4block_xor_neon)
        vsri.u32        q6, q9, #25
 
        subs            r3, r3, #1
-       beq             0f
-
-       vld1.32         {q8-q9}, [sp, :256]
-       b               .Ldoubleround4
-
-       // x0[0-3] += s0[0]
-       // x1[0-3] += s0[1]
-       // x2[0-3] += s0[2]
-       // x3[0-3] += s0[3]
-0:     ldmia           r0!, {r3-r6}
-       vdup.32         q8, r3
-       vdup.32         q9, r4
-       vadd.i32        q0, q0, q8
-       vadd.i32        q1, q1, q9
-       vdup.32         q8, r5
-       vdup.32         q9, r6
-       vadd.i32        q2, q2, q8
-       vadd.i32        q3, q3, q9
-
-       // x4[0-3] += s1[0]
-       // x5[0-3] += s1[1]
-       // x6[0-3] += s1[2]
-       // x7[0-3] += s1[3]
-       ldmia           r0!, {r3-r6}
-       vdup.32         q8, r3
-       vdup.32         q9, r4
-       vadd.i32        q4, q4, q8
-       vadd.i32        q5, q5, q9
-       vdup.32         q8, r5
-       vdup.32         q9, r6
-       vadd.i32        q6, q6, q8
-       vadd.i32        q7, q7, q9
-
-       // interleave 32-bit words in state n, n+1
-       vzip.32         q0, q1
-       vzip.32         q2, q3
-       vzip.32         q4, q5
-       vzip.32         q6, q7
-
-       // interleave 64-bit words in state n, n+2
-       vswp            d1, d4
-       vswp            d3, d6
-       vswp            d9, d12
-       vswp            d11, d14
-
-       // xor with corresponding input, write to output
-       vld1.8          {q8-q9}, [r2]!
-       veor            q8, q8, q0
-       veor            q9, q9, q4
-       vst1.8          {q8-q9}, [r1]!
-
        vld1.32         {q8-q9}, [sp, :256]
-
-       // x8[0-3] += s2[0]
-       // x9[0-3] += s2[1]
-       // x10[0-3] += s2[2]
-       // x11[0-3] += s2[3]
-       ldmia           r0!, {r3-r6}
-       vdup.32         q0, r3
-       vdup.32         q4, r4
-       vadd.i32        q8, q8, q0
-       vadd.i32        q9, q9, q4
-       vdup.32         q0, r5
-       vdup.32         q4, r6
-       vadd.i32        q10, q10, q0
-       vadd.i32        q11, q11, q4
-
-       // x12[0-3] += s3[0]
-       // x13[0-3] += s3[1]
-       // x14[0-3] += s3[2]
-       // x15[0-3] += s3[3]
-       ldmia           r0!, {r3-r6}
-       vdup.32         q0, r3
-       vdup.32         q4, r4
-       adr             r3, CTRINC
-       vadd.i32        q12, q12, q0
-       vld1.32         {q0}, [r3, :128]
-       vadd.i32        q13, q13, q4
-       vadd.i32        q12, q12, q0            // x12 += counter values 0-3
-
-       vdup.32         q0, r5
-       vdup.32         q4, r6
-       vadd.i32        q14, q14, q0
-       vadd.i32        q15, q15, q4
-
-       // interleave 32-bit words in state n, n+1
-       vzip.32         q8, q9
-       vzip.32         q10, q11
-       vzip.32         q12, q13
-       vzip.32         q14, q15
-
-       // interleave 64-bit words in state n, n+2
-       vswp            d17, d20
-       vswp            d19, d22
-       vswp            d25, d28
+       bne             .Ldoubleround4
+
+       // re-interleave the 32-bit words of the four blocks
+       vzip.32         q14, q15        // => (14 15 14 15) (14 15 14 15)
+       vzip.32         q12, q13        // => (12 13 12 13) (12 13 12 13)
+       vzip.32         q10, q11        // => (10 11 10 11) (10 11 10 11)
+       vzip.32         q8, q9          // => (8 9 8 9) (8 9 8 9)
+       vzip.32         q6, q7          // => (6 7 6 7) (6 7 6 7)
+       vzip.32         q4, q5          // => (4 5 4 5) (4 5 4 5)
+       vzip.32         q2, q3          // => (2 3 2 3) (2 3 2 3)
+       vzip.32         q0, q1          // => (0 1 0 1) (0 1 0 1)
        vswp            d27, d30
+       vswp            d25, d28
+       vswp            d19, d22
+       vswp            d17, d20
+       vswp            d11, d14
+         vst1.32       {q14-q15}, [sp, :256]   // free up two registers
+       vswp            d9, d12
+       vswp            d3, d6
+         vld1.32       {q14-q15}, [r0]!        // load s0..7
+       vswp            d1, d4
 
-       vmov            q4, q1
+       // Swap q1 and q4 so that we'll free up consecutive registers (q0-q1)
+       // after XORing the first 32 bytes.
+       vswp            q1, q4
+
+       // blocks are: (q0 q1 q8 q12) (q2 q6 q10 q14) (q4 q5 q9 q13) (q3 q7 q11 
q15)
+
+       // x0..3[0-3] += s0..3[0-3]     (add orig state to 1st row of each 
block)
+       vadd.u32        q0, q0, q14
+       vadd.u32        q2, q2, q14
+       vadd.u32        q4, q4, q14
+       vadd.u32        q3, q3, q14
+
+       // x4..7[0-3] += s4..7[0-3]     (add orig state to 2nd row of each 
block)
+       vadd.u32        q1, q1, q15
+       vadd.u32        q6, q6, q15
+       vadd.u32        q5, q5, q15
+       vadd.u32        q7, q7, q15
+
+       // XOR first 32 bytes using keystream from first two rows of first block
+       vld1.8          {q14-q15}, [r2]!
+       veor            q14, q14, q0
+       veor            q15, q15, q1
+         vld1.32       {q0-q1}, [r0]           // load s8..s15
+       vst1.8          {q14-q15}, [r1]!
+
+       // x8..11[0-3] += s8..11[0-3]   (add orig state to 3rd row of each 
block)
+       vadd.u32        q8,  q8,  q0
+       vadd.u32        q10, q10, q0
+         vld1.32       {q14-q15}, [sp, :256]
+       vadd.u32        q9,  q9,  q0
+         adr           ip, .Lctrinc2
+       vadd.u32        q11, q11, q0
+
+       // x12..15[0-3] += s12..15[0-3] (add orig state to 4th row of each 
block)
+       vld1.32         {q0}, [ip, :128]        // load (1, 0, 2, 0)
+       vadd.u32        q15, q15, q1
+       vadd.u32        q13, q13, q1
+       vadd.u32        q14, q14, q1
+       vadd.u32        q12, q12, q1
+       vadd.u32        d30, d30, d1            // x12[3] += 2
+       vadd.u32        d26, d26, d1            // x12[2] += 2
+       vadd.u32        d28, d28, d0            // x12[1] += 1
+       vadd.u32        d30, d30, d0            // x12[3] += 1
+
+       // XOR the rest of the data with the keystream
 
        vld1.8          {q0-q1}, [r2]!
        veor            q0, q0, q8
@@ -511,13 +513,16 @@ ENTRY(chacha20_4block_xor_neon)
        vst1.8          {q0-q1}, [r1]!
 
        vld1.8          {q0-q1}, [r2]
+         mov           sp, r4          // restore original stack pointer
        veor            q0, q0, q11
        veor            q1, q1, q15
        vst1.8          {q0-q1}, [r1]
 
-       mov             sp, ip
-       pop             {r4-r6, pc}
+       pop             {r4}
+       bx              lr
 ENDPROC(chacha20_4block_xor_neon)
 
        .align          4
-CTRINC:        .word           0, 1, 2, 3
+.Lctrinc1:     .word   0, 1, 2, 3
+.Lctrinc2:     .word   1, 0, 2, 0
+.Lrol8_table:  .byte   3, 0, 1, 2, 7, 4, 5, 6
-- 
2.18.0

Reply via email to