The compiler team did the hard work for this distilling a problem in large fortran application which showed up when applied to a 290MB input data set down to this instruction:
ldfd f34=[r17],-8 Which they noticed incremented r17 by 0x10 rather than decrementing it by 8 when the value in r17 caused an unaligned data fault. I tracked it down to some bad instruction decoding in unaligned.c. The code assumes that the 'x' bit can determine whether the instruction is an "ldf" or "ldfp" ... which it is for opcode=6 (see table 4-29 on page 3:302 of the SDM). But for opcode=7 the 'x' bit is irrelevent, all variants are "ldf" instructions (see table 4-36 on page 3:306). Note also that interpreting the instruction as "ldfp" means that the "paired" floating point register (f35 in the example here) will also be corrupted. Signed-off-by: Tony Luck <[EMAIL PROTECTED]> --- arch/ia64/kernel/unaligned.c | 11 +++++++---- 1 file changed, 7 insertions(+), 4 deletions(-) --- a/arch/ia64/kernel/unaligned.c 2007-10-19 16:17:25.000000000 -0700 +++ b/arch/ia64/kernel/unaligned.c 2008-01-11 13:17:41.877317341 -0800 @@ -1488,16 +1488,19 @@ case LDFA_OP: case LDFCCLR_OP: case LDFCNC_OP: - case LDF_IMM_OP: - case LDFA_IMM_OP: - case LDFCCLR_IMM_OP: - case LDFCNC_IMM_OP: if (u.insn.x) ret = emulate_load_floatpair(ifa, u.insn, regs); else ret = emulate_load_float(ifa, u.insn, regs); break; + case LDF_IMM_OP: + case LDFA_IMM_OP: + case LDFCCLR_IMM_OP: + case LDFCNC_IMM_OP: + ret = emulate_load_float(ifa, u.insn, regs); + break; + case STF_OP: case STF_IMM_OP: ret = emulate_store_float(ifa, u.insn, regs); - To unsubscribe from this list: send the line "unsubscribe linux-ia64" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html