This is against linux-stable 4.3.  Will send to sta...@vger.kernel.org
when Ack'ed here.

Hugh Dickins pointed out problems with the new hugetlbfs fallocate
hole punch code.  These problems are in the routine remove_inode_hugepages
and mostly occur in the case where there are holes in the range of
pages to be removed.  These holes could be the result of a previous hole
punch or simply sparse allocation.

remove_inode_hugepages handles both hole punch and truncate operations.
Page index handling was fixed/cleaned up so that the loop index always
matches the page being processed.  The code now only makes a single pass
through the range of pages as it was determined page faults could not
race with truncate.  A cond_resched() was added after removing up to
PAGEVEC_SIZE pages.

Some totally unnecessary code in hugetlbfs_fallocate() that remained from
early development was also removed.

v2:
  Make remove_inode_hugepages simpler after verifying truncate can not
  race with page faults here.

Fixes: b5cec28d36f5 ("hugetlbfs: truncate_hugepages() takes a range of pages")
Signed-off-by: Mike Kravetz <mike.krav...@oracle.com>
---
 fs/hugetlbfs/inode.c | 57 ++++++++++++++++++++++++++--------------------------
 1 file changed, 29 insertions(+), 28 deletions(-)

diff --git a/fs/hugetlbfs/inode.c b/fs/hugetlbfs/inode.c
index 316adb9..8290f39 100644
--- a/fs/hugetlbfs/inode.c
+++ b/fs/hugetlbfs/inode.c
@@ -332,12 +332,15 @@ static void remove_huge_page(struct page *page)
  * truncation is indicated by end of range being LLONG_MAX
  *     In this case, we first scan the range and release found pages.
  *     After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
- *     maps and global counts.
+ *     maps and global counts.  Page faults can not race with truncation
+ *     in this routine.  hugetlb_no_page() prevents page faults in the
+ *     truncated range.
  * hole punch is indicated if end is not LLONG_MAX
  *     In the hole punch case we scan the range and release found pages.
  *     Only when releasing a page is the associated region/reserv map
  *     deleted.  The region/reserv map for ranges without associated
- *     pages are not modified.
+ *     pages are not modified.  Page faults can race with hole punch.
+ *     This is indicated if we find a mapped page.
  * Note: If the passed end of range value is beyond the end of file, but
  * not LLONG_MAX this routine still performs a hole punch operation.
  */
@@ -361,44 +364,38 @@ static void remove_inode_hugepages(struct inode *inode, 
loff_t lstart,
        next = start;
        while (next < end) {
                /*
-                * Make sure to never grab more pages that we
-                * might possibly need.
+                * Don't grab more pages than the number left in the range.
                 */
                if (end - next < lookup_nr)
                        lookup_nr = end - next;
 
                /*
-                * This pagevec_lookup() may return pages past 'end',
-                * so we must check for page->index > end.
+                * When no more pages are found, we are done.
                 */
-               if (!pagevec_lookup(&pvec, mapping, next, lookup_nr)) {
-                       if (next == start)
-                               break;
-                       next = start;
-                       continue;
-               }
+               if (!pagevec_lookup(&pvec, mapping, next, lookup_nr))
+                       break;
 
                for (i = 0; i < pagevec_count(&pvec); ++i) {
                        struct page *page = pvec.pages[i];
                        u32 hash;
 
+                       /*
+                        * The page (index) could be beyond end.  This is
+                        * only possible in the punch hole case as end is
+                        * max page offset in the truncate case.
+                        */
+                       next = page->index;
+                       if (next >= end)
+                               break;
+
                        hash = hugetlb_fault_mutex_hash(h, current->mm,
                                                        &pseudo_vma,
                                                        mapping, next, 0);
                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
 
                        lock_page(page);
-                       if (page->index >= end) {
-                               unlock_page(page);
-                               mutex_unlock(&hugetlb_fault_mutex_table[hash]);
-                               next = end;     /* we are done */
-                               break;
-                       }
-
                        /*
-                        * If page is mapped, it was faulted in after being
-                        * unmapped.  Do nothing in this race case.  In the
-                        * normal case page is not mapped.
+                        * In the normal case the page is not mapped.
                         */
                        if (!page_mapped(page)) {
                                bool rsv_on_error = !PagePrivate(page);
@@ -421,17 +418,24 @@ static void remove_inode_hugepages(struct inode *inode, 
loff_t lstart,
                                                hugetlb_fix_reserve_counts(
                                                        inode, rsv_on_error);
                                }
+                       } else {
+                               /*
+                                * If page is mapped, it was faulted in after
+                                * being unmapped.  It indicates a race between
+                                * hole punch and page fault.  Do nothing in
+                                * this case.  Getting here in a truncate
+                                * operation is a bug.
+                                */
+                               BUG_ON(truncate_op);
                        }
 
-                       if (page->index > next)
-                               next = page->index;
-
                        ++next;
                        unlock_page(page);
 
                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
                }
                huge_pagevec_release(&pvec);
+               cond_resched();
        }
 
        if (truncate_op)
@@ -647,9 +651,6 @@ static long hugetlbfs_fallocate(struct file *file, int 
mode, loff_t offset,
        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
                i_size_write(inode, offset + len);
        inode->i_ctime = CURRENT_TIME;
-       spin_lock(&inode->i_lock);
-       inode->i_private = NULL;
-       spin_unlock(&inode->i_lock);
 out:
        mutex_unlock(&inode->i_mutex);
        return error;
-- 
2.4.3

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majord...@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Reply via email to