On 08/10/2017 04:30 AM, Eric Biggers wrote:
On Wed, Aug 09, 2017 at 07:35:53PM -0700, Nick Terrell wrote:

The memory reported is the amount of memory the compressor requests.

| Method   | Size (B) | Time (s) | Ratio | MB/s    | Adj MB/s | Mem (MB) |
|----------|----------|----------|-------|---------|----------|----------|
| none     | 11988480 |    0.100 |     1 | 2119.88 |        - |        - |
| zstd -1  | 73645762 |    1.044 | 2.878 |  203.05 |   224.56 |     1.23 |
| zstd -3  | 66988878 |    1.761 | 3.165 |  120.38 |   127.63 |     2.47 |
| zstd -5  | 65001259 |    2.563 | 3.261 |   82.71 |    86.07 |     2.86 |
| zstd -10 | 60165346 |   13.242 | 3.523 |   16.01 |    16.13 |    13.22 |
| zstd -15 | 58009756 |   47.601 | 3.654 |    4.45 |     4.46 |    21.61 |
| zstd -19 | 54014593 |  102.835 | 3.925 |    2.06 |     2.06 |    60.15 |
| zlib -1  | 77260026 |    2.895 | 2.744 |   73.23 |    75.85 |     0.27 |
| zlib -3  | 72972206 |    4.116 | 2.905 |   51.50 |    52.79 |     0.27 |
| zlib -6  | 68190360 |    9.633 | 3.109 |   22.01 |    22.24 |     0.27 |
| zlib -9  | 67613382 |   22.554 | 3.135 |    9.40 |     9.44 |     0.27 |


Theses benchmarks are misleading because they compress the whole file as a
single stream without resetting the dictionary, which isn't how data will
typically be compressed in kernel mode.  With filesystem compression the data
has to be divided into small chunks that can each be decompressed independently.
That eliminates one of the primary advantages of Zstandard (support for large
dictionary sizes).

I did btrfs benchmarks of kernel trees and other normal data sets as well. The numbers were in line with what Nick is posting here. zstd is a big win over both lzo and zlib from a btrfs point of view.

It's true Nick's patches only support a single compression level in btrfs, but that's because btrfs doesn't have a way to pass in the compression ratio. It could easily be a mount option, it was just outside the scope of Nick's initial work.

-chris



Reply via email to