Hi Miquel, Thanks for reviewing the patch. Please see my comments inline.
> -----Original Message----- > From: Miquel Raynal [mailto:miquel.ray...@bootlin.com] > Sent: Tuesday, March 20, 2018 4:08 AM > To: nagasureshkumarre...@gmail.com > Cc: boris.brezil...@bootlin.com; rich...@nod.at; dw...@infradead.org; > computersforpe...@gmail.com; marek.va...@gmail.com; > cyrille.pitc...@wedev4u.fr; linux-...@lists.infradead.org; linux- > ker...@vger.kernel.org; Michal Simek <mich...@xilinx.com>; Punnaiah > Choudary Kalluri <punn...@xilinx.com>; Naga Sureshkumar Relli > <nagas...@xilinx.com> > Subject: Re: [LINUX PATCH v8 2/2] mtd: rawnand: pl353: Add basic driver for > arm pl353 smc nand interface > > Hi Naga, > > Thanks for sending a new version supporting ->exec_op(). A few comments > below. > > On Wed, 14 Mar 2018 16:18:25 +0530, > <nagasureshkumarre...@gmail.com> wrote: > > > From: Naga Sureshkumar Relli <nagas...@xilinx.com> > > > > Add driver for arm pl353 static memory controller nand interface with > > HW ECC support. This controller is used in xilinx zynq soc for > > interfacing the nand flash memory. > > > > Signed-off-by: Naga Sureshkumar Relli <nagas...@xilinx.com> > > --- > > Changes in v8: > > - Added exec_op() implementation > > - Fixed the below v7 review comments > > - removed mtd_info from pl353_nand_info struct > > - Corrected ecc layout offsets > > - Added on-die ecc support > > Changes in v7: > > - Currently not implemented the memclk rate adjustments. I will > > look into this later and once the basic driver is accepted. > > - Fixed GPL licence ident > > Changes in v6: > > - Fixed the checkpatch.pl reported warnings > > - Using the address cycles information from the onfi param page > > earlier it is hardcoded to 5 in driver Changes in v5: > > - Configure the nand timing parameters as per the onfi spec Changes > > in v4: > > - Updated the driver to sync with pl353_smc driver APIs Changes in > > v3: > > - implemented the proper error codes > > - further breakdown this patch to multiple sets > > - added the controller and driver details to Documentation section > > - updated the licenece to GPLv2 > > - reorganized the pl353_nand_ecc_init function Changes in v2: > > - use "depends on" rather than "select" option in kconfig > > - remove unused variable parts > > - remove dummy helper and use writel_relaxed directly > > --- > > drivers/mtd/nand/raw/Kconfig | 8 + > > drivers/mtd/nand/raw/Makefile | 1 + > > drivers/mtd/nand/raw/pl353_nand.c | 1363 > > +++++++++++++++++++++++++++++++++++++ > > 3 files changed, 1372 insertions(+) > > create mode 100644 drivers/mtd/nand/raw/pl353_nand.c > > > > diff --git a/drivers/mtd/nand/raw/Kconfig > > b/drivers/mtd/nand/raw/Kconfig index 2c6ecb7..5e20391 100644 > > --- a/drivers/mtd/nand/raw/Kconfig > > +++ b/drivers/mtd/nand/raw/Kconfig > > @@ -566,4 +566,12 @@ config MTD_NAND_MTK > > Enables support for NAND controller on MTK SoCs. > > This controller is found on mt27xx, mt81xx, mt65xx SoCs. > > > > +config MTD_NAND_PL353 > > + tristate "ARM Pl353 NAND flash driver" > > + depends on MTD_NAND && ARM > > + depends on PL35X_SMC > > + help > > + This enables access to the NAND flash device on PL353 > > + SMC controller. > > What about: > "Enables support for PrimeCell Static Memory Controller > PL353."? Are you asking to change the description in help? > > > + > > endif # MTD_NAND > > diff --git a/drivers/mtd/nand/raw/Makefile > > b/drivers/mtd/nand/raw/Makefile index f16f59a..3e943f3 100644 > > --- a/drivers/mtd/nand/raw/Makefile > > +++ b/drivers/mtd/nand/raw/Makefile > > @@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_HISI504) += > hisi504_nand.o > > obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ > > obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o > > obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o > > +obj-$(CONFIG_MTD_NAND_PL353) += pl353_nand.o > > > > nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o > > nand-objs += nand_amd.o diff --git a/drivers/mtd/nand/raw/pl353_nand.c > > b/drivers/mtd/nand/raw/pl353_nand.c > > new file mode 100644 > > index 0000000..55c51e2 > > --- /dev/null > > +++ b/drivers/mtd/nand/raw/pl353_nand.c > > @@ -0,0 +1,1363 @@ > > +// SPDX-License-Identifier: GPL-2.0 > > +/* > > + * ARM PL353 NAND flash controller driver > > + * > > + * Copyright (C) 2017 Xilinx, Inc > > + * Author: Punnaiah <punna...@xilinx.com> > > + * Author: nagasuresh <nagas...@xilinx.com> > > Please use your full names here. Ok, I will update. > > > + * > > + */ > > + > > +#include <linux/err.h> > > +#include <linux/delay.h> > > +#include <linux/interrupt.h> > > +#include <linux/io.h> > > +#include <linux/ioport.h> > > +#include <linux/irq.h> > > +#include <linux/module.h> > > +#include <linux/moduleparam.h> > > +#include <linux/mtd/mtd.h> > > +#include <linux/mtd/rawnand.h> > > +#include <linux/mtd/nand_ecc.h> > > +#include <linux/mtd/partitions.h> > > +#include <linux/of_address.h> > > +#include <linux/of_device.h> > > +#include <linux/of_platform.h> > > +#include <linux/platform_device.h> > > +#include <linux/slab.h> > > +#include <linux/platform_data/pl353-smc.h> > > + > > +#define PL353_NAND_DRIVER_NAME "pl353-nand" > > + > > +/* NAND flash driver defines */ > > +#define PL353_NAND_CMD_PHASE 1 /* End command valid in > command phase */ > > +#define PL353_NAND_DATA_PHASE 2 /* End command valid in data > phase */ > > +#define PL353_NAND_ECC_SIZE 512 /* Size of data for ECC > operation */ > > + > > +/* Flash memory controller operating parameters */ > > + > > +#define PL353_NAND_ECC_CONFIG (BIT(4) | /* ECC read at end of > page */ \ > > + (0 << 5)) /* No Jumping */ > > + > > +/* AXI Address definitions */ > > +#define START_CMD_SHIFT 3 > > +#define END_CMD_SHIFT 11 > > +#define END_CMD_VALID_SHIFT 20 > > +#define ADDR_CYCLES_SHIFT 21 > > +#define CLEAR_CS_SHIFT 21 > > +#define ECC_LAST_SHIFT 10 > > +#define COMMAND_PHASE (0 << 19) > > +#define DATA_PHASE BIT(19) > > + > > +#define PL353_NAND_ECC_LAST BIT(ECC_LAST_SHIFT) /* Set > ECC_Last */ > > +#define PL353_NAND_CLEAR_CS BIT(CLEAR_CS_SHIFT) /* Clear chip > select */ > > + > > +#define ONDIE_ECC_FEATURE_ADDR 0x90 > > +#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ) > > +#define PL353_NAND_DEV_BUSY_TIMEOUT (1 * HZ) > > +#define PL353_NAND_LAST_TRANSFER_LENGTH 4 > > + > > +/* Inline function for the NAND controller register write */ static > > +inline void pl353_nand_write32(void __iomem *addr, u32 val) { > > + writel_relaxed((val), (addr)); > > +} > > Is there an actual need for this inline function? Why not calling > writel_relaxed() directly? Let me check and get back to you. > > > + > > +struct pl353_nfc_op { > > + u32 cmnds[4]; > > + u32 thirdrow; > > + u32 type; > > + u32 end_cmd; > > + u32 addrs; > > + bool wait; > > + u32 len; > > + u32 naddrs; > > + unsigned int data_instr_idx; > > + const struct nand_op_instr *data_instr; > > + unsigned int rdy_timeout_ms; > > + unsigned int rdy_delay_ns; > > +}; > > + > > +/** > > + * struct pl353_nand_info - Defines the NAND flash driver instance > > + * @chip: NAND chip information structure > > + * @nand_base: Virtual address of the NAND flash device > > + * @end_cmd_pending: End command is pending > > + * @end_cmd: End command > > + * @row_addr_cycles: Row address cycles > > + * @col_addr_cycles: Column address cycles > > + * @address: Page address > > + * @cmd_pending: More command is needed > > + */ > > +struct pl353_nand_info { > > + struct nand_chip chip; > > + void __iomem *nand_base; > > + unsigned long end_cmd_pending; > > + unsigned long end_cmd; > > + u8 row_addr_cycles; > > + u8 col_addr_cycles; > > + u32 address; > > + u32 cmd_pending; > > +}; > > + > > +static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section, > > + struct mtd_oob_region *oobregion) { > > + struct nand_chip *chip = mtd_to_nand(mtd); > > + > > + if (section >= chip->ecc.steps) > > + return -ERANGE; > > + > > + oobregion->offset = (section * 16) + 0; > > + oobregion->length = chip->ecc.bytes; > > + > > + return 0; > > +} > > + > > +static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section, > > + struct mtd_oob_region *oobregion) { > > + struct nand_chip *chip = mtd_to_nand(mtd); > > + > > + if (section >= chip->ecc.steps) > > + return -ERANGE; > > + > > + oobregion->offset = (section * 16) + 8; > > + > > Extra space I will fix it. > > > + oobregion->length = 8; > > + > > + return 0; > > +} > > + > > +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = { > > + .ecc = pl353_ecc_ooblayout16_ecc, > > + .free = pl353_ecc_ooblayout16_free, > > +}; > > + > > +static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section, > > + struct mtd_oob_region *oobregion) { > > + struct nand_chip *chip = mtd_to_nand(mtd); > > + > > + if (section >= chip->ecc.steps) > > + return -ERANGE; > > + > > + oobregion->offset = (section * chip->ecc.bytes) + 52; > > + oobregion->length = chip->ecc.bytes; > > + > > + return 0; > > +} > > + > > +static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section, > > + struct mtd_oob_region *oobregion) { > > + struct nand_chip *chip = mtd_to_nand(mtd); > > + > > + if (section) > > + return -ERANGE; > > + if (section >= chip->ecc.steps) > > + return -ERANGE; > > If you can't support more than one section, the second if is useless, and the > offset is just "2". Yes, we can use just 2. I will update > > > + > > + oobregion->offset = (section * chip->ecc.bytes) + 2; > > + > > + oobregion->length = 50; > > + > > + return 0; > > +} > > + > > +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = { > > + .ecc = pl353_ecc_ooblayout64_ecc, > > + .free = pl353_ecc_ooblayout64_free, > > +}; > > + > > +/* Generic flash bbt decriptors */ > > +static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; static uint8_t > > +mirror_pattern[] = { '1', 't', 'b', 'B' }; > > + > > +static struct nand_bbt_descr bbt_main_descr = { > > + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | > NAND_BBT_WRITE > > + | NAND_BBT_2BIT | NAND_BBT_VERSION | > NAND_BBT_PERCHIP, > > + .offs = 4, > > + .len = 4, > > + .veroffs = 20, > > + .maxblocks = 4, > > + .pattern = bbt_pattern > > +}; > > + > > +static struct nand_bbt_descr bbt_mirror_descr = { > > + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | > NAND_BBT_WRITE > > + | NAND_BBT_2BIT | NAND_BBT_VERSION | > NAND_BBT_PERCHIP, > > + .offs = 4, > > + .len = 4, > > + .veroffs = 20, > > + .maxblocks = 4, > > + .pattern = mirror_pattern > > +}; > > + > > +/** > > + * pl353_nand_read_buf_l - read chip data into buffer > > + * @chip: Pointer to the NAND chip info structure > > + * @in: Pointer to the buffer to store read data > > + * @len: Number of bytes to read > > + * Return: Always return zero > > + */ > > +static int pl353_nand_read_buf_l(struct nand_chip *chip, > > + uint8_t *in, > > + unsigned int len) > > +{ > > + int i; > > + unsigned long *ptr = (unsigned long *)in; > > + > > + len >>= 2; > > Can you please let the compiler optimize things? I don't find this very > readable, I > would prefer a division here. And if this division by 4 is related to the > size of *ptr, > please use the sizeof() macro. Otherwise please document this value. At a time, we are reading 4bytes. Hence >> 2. I didn't get your point. Are you saying instead of shifting, just use divide by 4? > > > + for (i = 0; i < len; i++) > > + ptr[i] = readl(chip->IO_ADDR_R); > > Space Ok, I will update it > > > + return 0; > > +} > > + > > +static void pl353_nand_write_buf_l(struct nand_chip *chip, const uint8_t > *buf, > > + int len) > > +{ > > + int i; > > + unsigned long *ptr = (unsigned long *)buf; > > + > > + for (i = 0; i < len; i++) > > + writeb(ptr[i], chip->IO_ADDR_W); > > Here you use writeb (as opposed to readl previously). Then, I guess you can > also > read byte per byte. If so, you can drop both helpers and let the core use its > defaults ones: nand_read/write_buf(). May be the function name I have written wrongly. When using writel, it should be nand_write_buf_l. But the thing is, when using exec_op, core is not calling chip->read_byte(), hence I added Byte reading. > > Same for the next functions. Plus, if you don't use them inside > ->exec_op() implementation, they have to be removed anyway. The name of the function should change to buf_l, to do 4byte writes. The name is creating confusion. > > > +} > > + > > +/** > > + * pl353_nand_write_buf - write buffer to chip > > + * @mtd: Pointer to the mtd info structure > > + * @buf: Pointer to the buffer to store read data > > + * @len: Number of bytes to write > > + */ > > +static void pl353_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, > > + int len) > > +{ > > + int i; > > + struct nand_chip *chip = mtd_to_nand(mtd); > > + unsigned long *ptr = (unsigned long *)buf; > > + > > + len >>= 2; > > + > > + for (i = 0; i < len; i++) > > + writel(ptr[i], chip->IO_ADDR_W); > > +} > > + > > +/** > > + * pl353_nand_read_buf - read chip data into buffer > > + * @chip: Pointer to the NAND chip info structure > > + * @in: Pointer to the buffer to store read data > > + * @len: Number of bytes to read > > + * Return: 0 on success or error value on failure > > + */ > > +static int pl353_nand_read_buf(struct nand_chip *chip, > > + uint8_t *in, > > + unsigned int len) > > +{ > > + int i; > > + > > + for (i = 0; i < len; i++) > > + in[i] = readb(chip->IO_ADDR_R); > > + > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_calculate_hwecc - Calculate Hardware ECC > > + * @mtd: Pointer to the mtd_info structure > > + * @data: Pointer to the page data > > + * @ecc_code: Pointer to the ECC buffer where ECC data needs to be > stored > > You store ECC in a variable called "code", can you please make it consistent? Miquel, I am not using any variable called "code" > > > + * > > + * This function retrieves the Hardware ECC data from the controller > > +and returns > > + * ECC data back to the MTD subsystem. > > + * > > + * Return: 0 on success or error value on failure > > + */ > > +static int pl353_nand_calculate_hwecc(struct mtd_info *mtd, > > + const u8 *data, u8 *ecc_code) > > +{ > > + u32 ecc_value, ecc_status; > > + u8 ecc_reg, ecc_byte; > > + unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT; > > + /* Wait till the ECC operation is complete or timeout */ > > + do { > > + if (pl353_smc_ecc_is_busy()) > > Where does this function come from? The pl353 SMC has memory controller driver and this NAND driver is using those APIs. I sent patches to add the memory controller driver for pl353. https://www.spinics.net/lists/kernel/msg2748832.html https://www.spinics.net/lists/kernel/msg2748834.html https://www.spinics.net/lists/kernel/msg2748840.html > > I would rather prefer a readl_relaxed_poll_timeout() or similar, if possible. Let me check this function to use. > > > + cpu_relax(); > > + else > > + break; > > + } while (!time_after_eq(jiffies, timeout)); > > + > > + if (time_after_eq(jiffies, timeout)) { > > + pr_err("%s timed out\n", __func__); > > + return -ETIMEDOUT; > > + } > > + > > + for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) { > > + /* Read ECC value for each block */ > > + ecc_value = pl353_smc_get_ecc_val(ecc_reg); > > I don't have this function neither? Same as said above. > > > + ecc_status = (ecc_value >> 24) & 0xFF; > > + /* ECC value valid */ > > + if (ecc_status & 0x40) { > > + for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) { > > + /* Copy ECC bytes to MTD buffer */ > > + *ecc_code = ~ecc_value & 0xFF; > > + ecc_value = ecc_value >> 8; > > + ecc_code++; > > + } > > + } else { > > + pr_warn("%s status failed\n", __func__); > > + return -1; > > + } > > + } > > + return 0; > > +} > > + > > +/** > > + * onehot - onehot function > > + * @value: Value to check for onehot > > + * > > + * This function checks whether a value is onehot or not. > > + * onehot is if and only if onebit is set. > > s/onebit/one bit/ > > But I am sure there is already a function for that in the kernel, please > don't use > your own implementation for this kind of stuff. Ok, I will check the existing function and will modify. > > > + * > > + * Return: 1 if it is onehot else 0 > > + */ > > +static int onehot(unsigned short value) { > > + return (value & (value - 1)) == 0; > > +} > > + > > +/** > > + * pl353_nand_correct_data - ECC correction function > > + * @mtd: Pointer to the mtd_info structure > > + * @buf: Pointer to the page data > > + * @read_ecc: Pointer to the ECC value read from spare data area > > + * @calc_ecc: Pointer to the calculated ECC value > > + * > > + * This function corrects the ECC single bit errors & detects 2-bit errors. > > + * > > + * Return: 0 if no ECC errors found > > + * 1 if single bit error found and corrected. > > + * -1 if multiple ECC errors found. > > + */ > > +static int pl353_nand_correct_data(struct mtd_info *mtd, unsigned char > *buf, > > + unsigned char *read_ecc, > > + unsigned char *calc_ecc) > > +{ > > + unsigned char bit_addr; > > + unsigned int byte_addr; > > + unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper; > > + unsigned short calc_ecc_lower, calc_ecc_upper; > > + > > + read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff; > > + read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff; > > + > > + calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff; > > + calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff; > > + > > + ecc_odd = read_ecc_lower ^ calc_ecc_lower; > > + ecc_even = read_ecc_upper ^ calc_ecc_upper; > > + > > + if ((ecc_odd == 0) && (ecc_even == 0)) > > + return 0; /* no error */ > > What about: I think, the below logic is doing that. if (ecc_odd == (~ecc_even & 0xfff)) > > if (!ecc_odd && !ecc_even) > return 0; > > > + > > + if (ecc_odd == (~ecc_even & 0xfff)) { > > + /* bits [11:3] of error code is byte offset */ > > + byte_addr = (ecc_odd >> 3) & 0x1ff; > > + /* bits [2:0] of error code is bit offset */ > > + bit_addr = ecc_odd & 0x7; > > + /* Toggling error bit */ > > + buf[byte_addr] ^= (1 << bit_addr); > > Use BIT(bit_addr) macro instead? Ok, I will modify it. > > > + return 1; > > + } > > + > > + if (onehot(ecc_odd | ecc_even) == 1) > > + return 1; /* one error in parity */ > > Comment should be before the if statement here. Ok, I will update it. > > > + > > + return -1; /* Uncorrectable error */ > > And here, before the return statement. Ok, I will update it. > > > +} > > + > > +static int pl353_dev_timeout(struct mtd_info *mtd, struct nand_chip > > +*chip) { > > + unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT; > > + > > + do { > > + if (chip->dev_ready(mtd)) > > + break; > > + cpu_relax(); > > + } while (!time_after_eq(jiffies, timeout)); > > + > > + if (time_after_eq(jiffies, timeout)) { > > + pr_err("%s timed out\n", __func__); > > + return -1; > > + } > > + > > + return 0; > > +} > > + > > +static void pl353_prepare_cmd(struct mtd_info *mtd, struct nand_chip *chip, > > + int page, int column, int start_cmd, int end_cmd, bool read) { > > + unsigned long data_phase_addr; > > + u32 end_cmd_valid = 0; > > + void __iomem *cmd_addr; > > + unsigned long cmd_phase_addr = 0, cmd_data = 0; > > + > > + struct pl353_nand_info *xnand = > > + container_of(chip, struct pl353_nand_info, chip); > > + > > + if (read) > > + end_cmd_valid = 1; > > + else > > + end_cmd_valid = 0; > > This is a good spot to use the ternary operator :) Yes, we can use. I will add this. > > > + > > + cmd_phase_addr = (unsigned long __force)xnand->nand_base + ( > > + (((xnand->row_addr_cycles) + (xnand- > >col_addr_cycles)) > > + << ADDR_CYCLES_SHIFT) | > > + (end_cmd_valid << END_CMD_VALID_SHIFT) > | > > + (COMMAND_PHASE) | > > + (end_cmd << END_CMD_SHIFT) | > > Please don't align the '|' You mean, tabbing? > > > + (start_cmd << START_CMD_SHIFT)); > > + cmd_addr = (void __iomem * __force)cmd_phase_addr; > > + > > + /* Get the data phase address */ > > + data_phase_addr = (unsigned long __force)xnand->nand_base + ( > > + (0x0 << CLEAR_CS_SHIFT) | > > + (0 << END_CMD_VALID_SHIFT) | > > + (DATA_PHASE) | > > + (end_cmd << END_CMD_SHIFT) | > > + (0x0 << ECC_LAST_SHIFT)); > > + > > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > > + chip->IO_ADDR_W = chip->IO_ADDR_R; > > + if (chip->options & NAND_BUSWIDTH_16) > > + column >>= 1; > > / 2 > > > + cmd_data = column; > > + if (mtd->writesize > PL353_NAND_ECC_SIZE) { > > + cmd_data |= page << 16; > > + /* Another address cycle for devices > 128MiB */ > > + if (chip->chipsize > (128 << 20)) { > > Now there is a flag for that in the core, called NAND_ROW_ADDR_3. I will check and update. > > > + pl353_nand_write32(cmd_addr, cmd_data); > > + cmd_data = (page >> 16); > > + } > > + } else { > > + cmd_data |= page << 8; > > + } > > Space Ok, I will update. > > > + pl353_nand_write32(cmd_addr, cmd_data); } > > + > > +/** > > + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read > function > > + * @mtd: Pointer to the mtd info structure > > + * @chip: Pointer to the NAND chip info structure > > + * @page: Page number to read > > + * > > + * Return: Always return zero > > + */ > > +static int pl353_nand_read_oob(struct mtd_info *mtd, struct nand_chip > *chip, > > + int page) > > +{ > > + > > + unsigned long data_phase_addr; > > + uint8_t *p; > > + > > + chip->pagebuf = -1; > > + if (mtd->writesize < PL353_NAND_ECC_SIZE) > > + return 0; > > + > > + pl353_prepare_cmd(mtd, chip, page, mtd->writesize, > NAND_CMD_READ0, > > + NAND_CMD_READSTART, 1); > > Alignment Are you running any script apart from checkpatch? Any way I will correct it. > > > + > > + ndelay(100); > > + pl353_dev_timeout(mtd, chip); > > + > > + p = chip->oob_poi; > > + pl353_nand_read_buf_l(chip, p, > > + (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH)); > > Alignment Ok, I will correct it. > > > + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; > > + data_phase_addr |= PL353_NAND_CLEAR_CS; > > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > > + pl353_nand_read_buf_l(chip, p, > PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data > write function > > + * @mtd: Pointer to the mtd info structure > > + * @chip: Pointer to the NAND chip info structure > > + * @page: Page number to write > > + * > > + * Return: Zero on success and EIO on failure > > + */ > > Comments inside this function would be welcome! Ok, I will add. > > > +static int pl353_nand_write_oob(struct mtd_info *mtd, struct nand_chip > *chip, > > + int page) > > +{ > > + > > Extra space Any way I will correct it. > > > + const uint8_t *buf = chip->oob_poi; > > + unsigned long data_phase_addr; > > + struct pl353_nand_info *xnand = > > + container_of(chip, struct pl353_nand_info, chip); > > + u32 addrcycles = 0, ret; > > + unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT; > > + u8 status; > > + > > + chip->pagebuf = -1; > > + addrcycles = xnand->row_addr_cycles + xnand->col_addr_cycles; > > + pl353_prepare_cmd(mtd, chip, page, mtd->writesize, > NAND_CMD_SEQIN, > > + NAND_CMD_PAGEPROG, 0); > > + ndelay(100); > > + pl353_nand_write_buf(mtd, buf, > > + (mtd->oobsize - > PL353_NAND_LAST_TRANSFER_LENGTH)); > > + buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; > > + data_phase_addr |= PL353_NAND_CLEAR_CS; > > + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); > > + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; > > + pl353_nand_write_buf(mtd, buf, > PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + /* Send command to program the OOB data */ > > + ret = nand_status_op(chip, &status); > > Doing this without exiting the status state is broken. I didn't get. > > > + timeout = jiffies + msecs_to_jiffies(timeout); > > + do { > > + if (chip->dev_ready) { > > + if (chip->dev_ready(mtd)) > > + break; > > + } else { > > You give your own implementation of ->dev_ready(). So this is dead code. Hmm, you are correct, I will remove this code. > > > + if (status & NAND_STATUS_READY) > > You don't update "status", while you wait for it to change. Basically I am waiting for device ready, but not updating the status. I will look this implementation and will get back to you. > > > + break; > > + } > > + cond_resched(); > > + } while (time_before(jiffies, timeout)); > > + > > + /* This can happen if in case of timeout or buggy dev_ready */ > > + WARN_ON(!(status & NAND_STATUS_READY)); > > I think the whole block has to be replaced by a simple nand_wait_ready() call. Let me use this, thanks for pointing. > > > + > > + return (status & NAND_STATUS_FAIL) ? -EIO : 0; } > > + > > +/** > > + * pl353_nand_read_page_raw - [Intern] read raw page data without ecc > > + * @mtd: Pointer to the mtd info structure > > + * @chip: Pointer to the NAND chip info structure > > + * @buf: Pointer to the data buffer > > + * @oob_required: Caller requires OOB data read to chip->oob_poi > > + * @page: Page number to read > > + * > > + * Return: Always return zero > > + */ > > +static int pl353_nand_read_page_raw(struct mtd_info *mtd, > > + struct nand_chip *chip, > > + uint8_t *buf, int oob_required, int page) > > Do you really need raw accessors? Yes, when using on-die ecc, this function is getting called. i.e. nand_micron.c is calling nand_set_features_op, with DATA_OUT_INSTR, and there we are using this. > > Not sure this is needed. > > > +{ > > + unsigned long data_phase_addr; > > + uint8_t *p; > > + > > + pl353_nand_read_buf_l(chip, buf, mtd->writesize); > > + p = chip->oob_poi; > > + pl353_nand_read_buf_l(chip, p, > > + (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH)); > > + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; > > + data_phase_addr |= PL353_NAND_CLEAR_CS; > > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > > + > > + pl353_nand_read_buf_l(chip, p, > PL353_NAND_LAST_TRANSFER_LENGTH); > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_write_page_raw - [Intern] raw page write function > > + * @mtd: Pointer to the mtd info structure > > + * @chip: Pointer to the NAND chip info structure > > + * @buf: Pointer to the data buffer > > + * @oob_required: Caller requires OOB data read to chip->oob_poi > > + * @page: Page number to write > > + * > > + * Return: Always return zero > > + */ > > +static int pl353_nand_write_page_raw(struct mtd_info *mtd, > > + struct nand_chip *chip, > > + const uint8_t *buf, int oob_required, > > + int page) > > +{ > > + unsigned long data_phase_addr; > > + uint8_t *p; > > + > > + pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_SEQIN, > > + NAND_CMD_PAGEPROG, 0); > > + pl353_nand_write_buf(mtd, buf, mtd->writesize); > > + p = chip->oob_poi; > > + pl353_nand_write_buf(mtd, p, > > + (mtd->oobsize - > PL353_NAND_LAST_TRANSFER_LENGTH)); > > + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; > > + data_phase_addr |= PL353_NAND_CLEAR_CS; > > + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); > > + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; > > + > > + pl353_nand_write_buf(mtd, p, > PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + return 0; > > +} > > + > > +/** > > + * nand_write_page_hwecc - Hardware ECC based page write function > > + * @mtd: Pointer to the mtd info structure > > + * @chip: Pointer to the NAND chip info structure > > + * @buf: Pointer to the data buffer > > + * @oob_required: Caller requires OOB data read to chip->oob_poi > > + * @page: Page number to write > > + * > > + * This functions writes data and hardware generated ECC values in to the > page. > > + * > > + * Return: Always return zero > > + */ > > +static int pl353_nand_write_page_hwecc(struct mtd_info *mtd, > > + struct nand_chip *chip, const uint8_t *buf, > > + int oob_required, int page) > > +{ > > + > > + int eccsize = chip->ecc.size; > > + int eccsteps = chip->ecc.steps; > > + uint8_t *ecc_calc = chip->ecc.calc_buf; > > + const uint8_t *p = buf; > > + uint8_t *oob_ptr; > > + u32 ret; > > + unsigned long data_phase_addr, timeo; > > + u8 status; > > + > > + pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_SEQIN, > > + NAND_CMD_PAGEPROG, 0); > > + ndelay(100); > > + for ( ; (eccsteps - 1); eccsteps--) { > > + pl353_nand_write_buf(mtd, p, eccsize); > > + p += eccsize; > > + } > > + pl353_nand_write_buf(mtd, p, > > + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH)); > > + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + /* Set ECC Last bit to 1 */ > > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; > > + data_phase_addr |= PL353_NAND_ECC_LAST; > > + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; > > + pl353_nand_write_buf(mtd, p, > PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + p = buf; > > + chip->ecc.calculate(mtd, p, &ecc_calc[0]); > > + > > + /* Wait for ECC to be calculated and read the error values */ > > + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, > > + 0, chip->ecc.total); > > + if (ret) > > + return ret; > > + /* Clear ECC last bit */ > > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; > > + data_phase_addr &= ~PL353_NAND_ECC_LAST; > > + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; > > + > > + /* Write the spare area with ECC bytes */ > > + oob_ptr = chip->oob_poi; > > + pl353_nand_write_buf(mtd, oob_ptr, > > + (mtd->oobsize - > PL353_NAND_LAST_TRANSFER_LENGTH)); > > + > > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; > > + data_phase_addr |= PL353_NAND_CLEAR_CS; > > + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); > > + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; > > + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + pl353_nand_write_buf(mtd, oob_ptr, > PL353_NAND_LAST_TRANSFER_LENGTH); > > Once using ->exec_op(), you should use something like nand_write_data_op(). Yes, I will update this. > > + > > + /* > > + * Apply this short delay always to ensure that we do wait tWB in any > > + * case on any machine. > > + */ > > + ndelay(100); > > + ret = nand_status_op(chip, &status); > > + timeo = jiffies + msecs_to_jiffies(400); > > + do { > > + if (chip->dev_ready) { > > + if (chip->dev_ready(mtd)) > > + break; > > + } else { > > + if (status & NAND_STATUS_READY) > > + break; > > + } > > + cond_resched(); > > + } while (time_before(jiffies, timeo)); > > + > > + /* This can happen if in case of timeout or buggy dev_ready */ > > + WARN_ON(!(status & NAND_STATUS_READY)); > > + > > Same here about ->dev_ready(). Ok > > > + return (status & NAND_STATUS_FAIL) ? -EIO : 0; } > > + > > +/** > > + * pl353_nand_write_page_swecc - [REPLACEABLE] software ecc based page > write > > + * function > > + * @mtd: Pointer to the mtd info structure > > + * @chip: Pointer to the NAND chip info structure > > + * @buf: Pointer to the data buffer > > + * @oob_required: Caller requires OOB data read to chip->oob_poi > > + * @page: Page number to write > > + * > > + * Return: Always return zero > > + */ > > +static int pl353_nand_write_page_swecc(struct mtd_info *mtd, > > + struct nand_chip *chip, const uint8_t *buf, > > + int oob_required, int page) > > +{ > > This is an exact copy of the core's function, you probably don't need it. Ok, I will remove it in next version. > > > + int i, eccsize = chip->ecc.size; > > + int eccbytes = chip->ecc.bytes; > > + int eccsteps = chip->ecc.steps; > > + uint8_t *ecc_calc = chip->ecc.calc_buf; > > + const uint8_t *p = buf; > > + u32 ret; > > + > > + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) > > + chip->ecc.calculate(mtd, p, &ecc_calc[0]); > > + > > + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, > > + 0, chip->ecc.total); > > + if (ret) > > + return ret; > > + chip->ecc.write_page_raw(mtd, chip, buf, 1, page); > > + > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_read_page_hwecc - Hardware ECC based page read function > > + * @mtd: Pointer to the mtd info structure > > + * @chip: Pointer to the NAND chip info structure > > + * @buf: Pointer to the buffer to store read data > > + * @oob_required: Caller requires OOB data read to chip->oob_poi > > + * @page: Page number to read > > + * > > + * This functions reads data and checks the data integrity by > > +comparing hardware > > + * generated ECC values and read ECC values from spare area. > > + * > > + * Return: 0 always and updates ECC operation status in to MTD structure > > + */ > > +static int pl353_nand_read_page_hwecc(struct mtd_info *mtd, > > + struct nand_chip *chip, > > + uint8_t *buf, int oob_required, int page) { > > + int i, stat, eccsize = chip->ecc.size; > > + int eccbytes = chip->ecc.bytes; > > + int eccsteps = chip->ecc.steps; > > + uint8_t *p = buf; > > + uint8_t *ecc_calc = chip->ecc.calc_buf; > > + uint8_t *ecc_code = chip->ecc.code_buf; > > + > > + uint8_t *oob_ptr; > > + u32 ret; > > + unsigned long data_phase_addr; > > + unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT; > > + > > + pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_READ0, > > + NAND_CMD_READSTART, 1); > > + ndelay(100); > > + do { > > + if (chip->dev_ready(mtd)) > > + break; > > + cpu_relax(); > > + } while (!time_after_eq(jiffies, timeout)); > > + > > + if (time_after_eq(jiffies, timeout)) { > > + pr_err("%s timed out\n", __func__); > > + return -1; > > + } > > + for ( ; (eccsteps - 1); eccsteps--) { > > + pl353_nand_read_buf_l(chip, p, eccsize); > > + p += eccsize; > > + } > > + pl353_nand_read_buf_l(chip, p, > > + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH)); > > + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + /* Set ECC Last bit to 1 */ > > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; > > + data_phase_addr |= PL353_NAND_ECC_LAST; > > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > > + pl353_nand_read_buf_l(chip, p, > PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + /* Read the calculated ECC value */ > > + p = buf; > > + chip->ecc.calculate(mtd, p, &ecc_calc[0]); > > + > > + /* Clear ECC last bit */ > > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; > > + data_phase_addr &= ~PL353_NAND_ECC_LAST; > > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > > + > > + /* Read the stored ECC value */ > > + oob_ptr = chip->oob_poi; > > + pl353_nand_read_buf_l(chip, oob_ptr, > > + (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH)); > > + > > + /* de-assert chip select */ > > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; > > + data_phase_addr |= PL353_NAND_CLEAR_CS; > > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > > + > > + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + pl353_nand_read_buf_l(chip, oob_ptr, > > +PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, > > + chip->ecc.total); > > + if (ret) > > + return ret; > > + > > + eccsteps = chip->ecc.steps; > > + p = buf; > > + > > + /* Check ECC error for all blocks and correct if it is correctable */ > > + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { > > In this loop you should monitore a max_bitflips value and return it instead of > zero at the end of the function. Ok, I will add it. > > > + stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); > > + if (stat < 0) > > + mtd->ecc_stats.failed++; > > + else > > + mtd->ecc_stats.corrected += stat; > > + } > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_read_page_swecc - [REPLACEABLE] software ecc based page > read > > + * function > > + * @mtd: Pointer to the mtd info structure > > + * @chip: Pointer to the NAND chip info structure > > + * @buf: Pointer to the buffer to store read data > > + * @oob_required: Caller requires OOB data read to chip->oob_poi > > + * @page: Page number to read > > + * > > + * Return: Always return zero > > + */ > > +static int pl353_nand_read_page_swecc(struct mtd_info *mtd, > > + struct nand_chip *chip, > > + uint8_t *buf, int oob_required, int page) > > { > > Same, you probably don't need this function. Yes, I will remove in next version. > > > + int i, eccsize = chip->ecc.size; > > + int eccbytes = chip->ecc.bytes; > > + int eccsteps = chip->ecc.steps; > > + uint8_t *p = buf; > > + uint8_t *ecc_calc = chip->ecc.calc_buf; > > + uint8_t *ecc_code = chip->ecc.code_buf; > > + u32 ret; > > + > > + chip->ecc.read_page_raw(mtd, chip, buf, page, 1); > > + > > + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) > > + chip->ecc.calculate(mtd, p, &ecc_calc[i]); > > + > > + ret = mtd_ooblayout_get_eccbytes(mtd, ecc_calc, chip->oob_poi, > > + 0, chip->ecc.total); > > + > > + eccsteps = chip->ecc.steps; > > + p = buf; > > + > > + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { > > + int stat; > > + > > + stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); > > + if (stat < 0) > > + mtd->ecc_stats.failed++; > > + else > > + mtd->ecc_stats.corrected += stat; > > + } > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_select_chip - Select the flash device > > + * @mtd: Pointer to the mtd info structure > > + * @chip: Pointer to the NAND chip info structure > > + * > > + * This function is empty as the NAND controller handles chip select > > +line > > + * internally based on the chip address passed in command and data phase. > > + */ > > +static void pl353_nand_select_chip(struct mtd_info *mtd, int chip) { > > +} > > + > > +/* NAND framework ->exec_op() hooks and related helpers */ static > > +void pl353_nfc_parse_instructions(struct nand_chip *chip, > > + const struct nand_subop *subop, > > + struct pl353_nfc_op *nfc_op) > > +{ > > + const struct nand_op_instr *instr = NULL; > > + unsigned int op_id, offset, naddrs; > > + int i; > > + const u8 *addrs; > > + > > + memset(nfc_op, 0, sizeof(struct pl353_nfc_op)); > > + for (op_id = 0; op_id < subop->ninstrs; op_id++) { > > + > > What is this for-loop for? I don't get it as you break the switch in every > case? I think, breaking switch case only not for loop. > > > + nfc_op->len = nand_subop_get_data_len(subop, op_id); > > + > > + instr = &subop->instrs[op_id]; > > + if (subop->ninstrs == 1) > > + nfc_op->cmnds[0] = -1; > > + switch (instr->type) { > > + case NAND_OP_CMD_INSTR: > > + nfc_op->type = NAND_OP_CMD_INSTR; > > + nfc_op->end_cmd = op_id - 1; > > + if (op_id) > > You should put { } on the if also if the else statement needs braces. Ok, but I didn't see any warning from checkpatch. > > > + nfc_op->cmnds[1] = instr->ctx.cmd.opcode; > > + else { > > + nfc_op->cmnds[0] = instr->ctx.cmd.opcode; > > + nfc_op->cmnds[1] = -1; > > + } > > + break; > > + > > + case NAND_OP_ADDR_INSTR: > > + offset = nand_subop_get_addr_start_off(subop, op_id); > > + naddrs = nand_subop_get_num_addr_cyc(subop, > op_id); > > + addrs = &instr->ctx.addr.addrs[offset]; > > + nfc_op->addrs = instr->ctx.addr.addrs[offset]; > > + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) > > + nfc_op->addrs |= instr->ctx.addr.addrs[i] << > > + (8 * i); > > + > > + if (naddrs >= 5) { > > + nfc_op->addrs >>= 16; > > + nfc_op->addrs |= (addrs[4] << 16); > > + nfc_op->thirdrow = 1; > > + } > > + nfc_op->naddrs = nand_subop_get_num_addr_cyc > > + (subop, op_id); > > Don't put the parameters of a function on the next line like that? Ok, I will update it. > > > + break; > > + > > + case NAND_OP_DATA_IN_INSTR: > > + nfc_op->data_instr = instr; > > + nfc_op->type = NAND_OP_DATA_IN_INSTR; > > + nfc_op->data_instr_idx = op_id; > > + break; > > + > > + case NAND_OP_DATA_OUT_INSTR: > > + nfc_op->data_instr = instr; > > + nfc_op->type = NAND_OP_DATA_IN_INSTR; > DATA_OUT_INSTR? Yes, I will correct it. But I am using instr->type in cmd_function. I will update it. > > Is this really tested? Yes, During on-die ECC test. When nand_micron is asking to set some features, this will execute. > > > + nfc_op->data_instr_idx = op_id; > > + break; > > + > > + case NAND_OP_WAITRDY_INSTR: > > + nfc_op->rdy_timeout_ms = instr- > >ctx.waitrdy.timeout_ms; > > + nfc_op->rdy_delay_ns = instr->delay_ns; > > + nfc_op->wait = true; > > + break; > > + } > > + } > > +} > > + > > +/** > > + * pl353_nand_cmd_function - Send command to NAND device > > + * @chip: Pointer to the NAND chip info structure > > + * @subop: Pointer to array of instructions > > + * Return: Always return zero > > + */ > > +static int pl353_nand_cmd_function(struct nand_chip *chip, > > + const struct nand_subop *subop) { > > + struct mtd_info *mtd = nand_to_mtd(chip); > > + const struct nand_op_instr *instr; > > + struct pl353_nfc_op nfc_op; > > nfc_op = {}; to initialize to 0. Ok, I will update it. > > > + struct pl353_nand_info *xnand = > > + container_of(chip, struct pl353_nand_info, chip); > > + void __iomem *cmd_addr; > > + unsigned long cmd_data = 0, end_cmd_valid = 0; > > + unsigned long cmd_phase_addr, data_phase_addr, end_cmd; > > + unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT; > > + u32 addrcycles = 0; > > + unsigned int op_id, len, offset; > > + > > + pl353_nfc_parse_instructions(chip, subop, &nfc_op); > > + instr = nfc_op.data_instr; > > + op_id = nfc_op.data_instr_idx; > > + len = nand_subop_get_data_len(subop, op_id); > > + offset = nand_subop_get_data_start_off(subop, op_id); > > + > > + if (nfc_op.cmnds[0] != -1) { > > + if (xnand->end_cmd_pending) { > > + /* > > + * Check for end command if this command request is > > + * same as the pending command then return > > + */ > > + if (xnand->end_cmd == nfc_op.cmnds[0]) { > > + xnand->end_cmd = 0; > > + xnand->end_cmd_pending = 0; > > + return 0; > > + } > > + } > > + > > + /* Clear interrupt */ > > + pl353_smc_clr_nand_int(); > > + end_cmd_valid = 0; > > Space Ok, I will correct it. > > > + /* Get the command phase address */ > > + if (nfc_op.cmnds[1] != -1) { > > + end_cmd_valid = 1; > > + } else { > > + if (nfc_op.cmnds[0] == NAND_CMD_READ0) > > + return 0; > > + } > > + if (nfc_op.end_cmd == NAND_CMD_NONE) > > + end_cmd = 0x0; > > + else > > + end_cmd = nfc_op.cmnds[1]; > > + > > + addrcycles = nfc_op.naddrs; > > + if (nfc_op.cmnds[0] == NAND_CMD_READ0 || > > + nfc_op.cmnds[0] == NAND_CMD_SEQIN) > > + addrcycles = xnand->row_addr_cycles + > > + xnand->col_addr_cycles; > > + else if ((nfc_op.cmnds[0] == NAND_CMD_ERASE1) || > > + (nfc_op.cmnds[0] == NAND_CMD_ERASE2)) > > + addrcycles = xnand->row_addr_cycles; > > + else > > + addrcycles = nfc_op.naddrs; > > A switch block would probably be appropriate. Yes we can use. > > > + cmd_phase_addr = (unsigned long __force)xnand->nand_base + > ( > > + (addrcycles << ADDR_CYCLES_SHIFT) | > > + (end_cmd_valid << END_CMD_VALID_SHIFT) > | > > + (COMMAND_PHASE) | > > + (end_cmd << END_CMD_SHIFT) | > > + (nfc_op.cmnds[0] << START_CMD_SHIFT)); > > + > > + cmd_addr = (void __iomem * __force)cmd_phase_addr; > > Space Ok, I will correc it. > > > + /* Get the data phase address */ > > + end_cmd_valid = 0; > > + > > + data_phase_addr = (unsigned long __force)xnand->nand_base + > ( > > + (0x0 << CLEAR_CS_SHIFT) | > > + (end_cmd_valid << END_CMD_VALID_SHIFT)| > > + (DATA_PHASE) | > > + (end_cmd << END_CMD_SHIFT) | > > + (0x0 << ECC_LAST_SHIFT)); > > + chip->IO_ADDR_R = (void __iomem * > __force)data_phase_addr; > > Do you really need this "__force" ? Let me check and get back to you on this. > > > + chip->IO_ADDR_W = chip->IO_ADDR_R; > > + /* Command phase AXI write */ > > + /* Read & Write */ > > + if (nfc_op.thirdrow) { > > + nfc_op.thirdrow = 0; > > + if (mtd->writesize > PL353_NAND_ECC_SIZE) { > > + cmd_data |= nfc_op.addrs << 16; > > + /* Another address cycle for devices > 128MiB > */ > > + if (chip->chipsize > (128 << 20)) { > > + pl353_nand_write32(cmd_addr, > cmd_data); > > + cmd_data = (nfc_op.addrs >> 16); > > + } > > + } > > + } else { > > + if (nfc_op.addrs != -1) { > > + int column = nfc_op.addrs; > > + /* > > + * Change read/write column, read id etc > > + * Adjust columns for 16 bit bus width > > + */ > > + if ((chip->options & NAND_BUSWIDTH_16) && > > + ((nfc_op.cmnds[0] == NAND_CMD_READ0) || > > + (nfc_op.cmnds[0] == NAND_CMD_SEQIN) || > > + (nfc_op.cmnds[0] == NAND_CMD_RNDOUT) || > > + (nfc_op.cmnds[0] == NAND_CMD_RNDIN))) { > > Alignment. Ok, I will update it. > > > + column >>= 1; > > + } > > + cmd_data = nfc_op.addrs; > > + } > > + } > > + pl353_nand_write32(cmd_addr, cmd_data); > > + if (nfc_op.type != 0) { > > + xnand->end_cmd = nfc_op.end_cmd; > > + xnand->end_cmd_pending = 1; > > + } > > + ndelay(100); > > Why? I found some errors during on_die testing, hence I added this delay. Let me check once > > > + if (nfc_op.cmnds[0] == 0xef) > > + nfc_op.wait = false; > > + if (nfc_op.wait) { > > + nfc_op.wait = false; > > You can remove this line. Yes, it is initializing to zero in cmd_function. > > > + do { > > + if (chip->dev_ready(mtd)) > > + break; > > + cpu_relax(); > > + } while (!time_after_eq(jiffies, timeout)); > > + if (time_after_eq(jiffies, timeout)) { > > + pr_err("%s timed out\n", __func__); > > + return -ETIMEDOUT; > > + } > > Same comment about the wait. Ok, I will update it. > > > + return 0; > > + } > > + } > > + > > + if (instr == NULL) > > if (!instr) I will modify it. > > > + return 0; > > + if (instr->type == NAND_OP_DATA_IN_INSTR) > > + return pl353_nand_read_buf(chip, instr->ctx.data.buf.in, len); > > + > > + if (instr->type == NAND_OP_DATA_OUT_INSTR) { > > + if ((nfc_op.cmnds[0] == NAND_CMD_PAGEPROG) || > > + (nfc_op.cmnds[0] == NAND_CMD_SEQIN)) > > + pl353_nand_write_page_raw(mtd, chip, > > + instr->ctx.data.buf.out, 0, nfc_op.addrs); > > + else > > + pl353_nand_write_buf_l(chip, instr->ctx.data.buf.out, > > + len); > > + return 0; > > + } > > + return 0; > > +} > > + > > +static const struct nand_op_parser pl353_nfc_op_parser = > NAND_OP_PARSER( > > + NAND_OP_PARSER_PATTERN( > > + pl353_nand_cmd_function, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), > > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), > > + NAND_OP_PARSER_PATTERN( > > + pl353_nand_cmd_function, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), > > + NAND_OP_PARSER_PATTERN( > > + pl353_nand_cmd_function, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), > > + NAND_OP_PARSER_PATTERN( > > + pl353_nand_cmd_function, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), > > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), > > + NAND_OP_PARSER_PATTERN( > > + pl353_nand_cmd_function, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8), > > + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048), > > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), > > + NAND_OP_PARSER_PATTERN( > > + pl353_nand_cmd_function, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), > > + NAND_OP_PARSER_PATTERN( > > + pl353_nand_cmd_function, > > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)), > > + NAND_OP_PARSER_PATTERN( > > + pl353_nand_cmd_function, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false)), > > I am pretty sure you can factorize all these patterns now. Use the "optional" > parameter for that. Can you explain little bit? I didn't get. > > > + ); > > + > > +static int pl353_nfc_exec_op(struct nand_chip *chip, > > + const struct nand_operation *op, > > + bool check_only) > > +{ > > + return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser, > > + op, check_only); > > +} > > + > > +/** > > + * pl353_nand_device_ready - Check device ready/busy line > > + * @mtd: Pointer to the mtd_info structure > > + * > > + * Return: 0 on busy or 1 on ready state > > + */ > > +static int pl353_nand_device_ready(struct mtd_info *mtd) { > > + if (pl353_smc_get_nand_int_status_raw()) { > > I don't understand where this new function is declared. Added links above for this driver. > > > + pl353_smc_clr_nand_int(); > > + return 1; > > + } > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode > > + * @mtd: Pointer to the mtd_info structure > > + * @ecc: Pointer to ECC control structure > > + * @ecc_mode: ondie ecc status > > + * > > + * This function initializes the ecc block and functional pointers as > > +per the > > + * ecc mode > > + */ > > +static void pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl > *ecc, > > + int ecc_mode) > > +{ > > + struct nand_chip *chip = mtd_to_nand(mtd); > > + > > + ecc->read_oob = pl353_nand_read_oob; > > + ecc->read_page_raw = pl353_nand_read_page_raw; > > + ecc->write_oob = pl353_nand_write_oob; > > + ecc->write_page_raw = pl353_nand_write_page_raw; > > + > > + if (ecc_mode == NAND_ECC_ON_DIE) { > > + pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS); > > + > > + /* > > + * The software ECC routines won't work with the > > + * SMC controller > > + */ > > + ecc->read_page = pl353_nand_read_page_raw; > > + ecc->write_page = pl353_nand_write_page_raw; > > + /* > > + * On-Die ECC spare bytes offset 8 is used for ECC codes > > + * Use the BBT pattern descriptors > > + */ > > + chip->bbt_td = &bbt_main_descr; > > + chip->bbt_md = &bbt_mirror_descr; > > + } else { > > + ecc->mode = NAND_ECC_HW; > > + /* Hardware ECC generates 3 bytes ECC code for each 512 > bytes */ > > + ecc->bytes = 3; > > + ecc->strength = 1; > > + ecc->calculate = pl353_nand_calculate_hwecc; > > + ecc->correct = pl353_nand_correct_data; > > + ecc->hwctl = NULL; > > You can drop this. Ok, I will update it. > > > + ecc->read_page = pl353_nand_read_page_hwecc; > > + ecc->size = PL353_NAND_ECC_SIZE; > > + ecc->write_page = pl353_nand_write_page_hwecc; > > + pl353_smc_set_ecc_pg_size(mtd->writesize); > > + switch (mtd->writesize) { > > + case 512: > > + case 1024: > > + case 2048: > > I prefer SZ_512, SZ_1K, SZ_2K. Ok, I will update it. Thanks again. If any of the above comments given by you, are not addressed properly, Please let me know. Thanks, Naga Sureshkumar Reli. > > > + > pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB); > > + break; > > + default: > > + /* > > + * The software ECC routines won't work with the > > + * SMC controller > > + */ > > + ecc->calculate = nand_calculate_ecc; > > + ecc->correct = nand_correct_data; > > + ecc->read_page = pl353_nand_read_page_swecc; > > + ecc->write_page = pl353_nand_write_page_swecc; > > + ecc->size = 256; > > + break; > > + } > > + > > + if (mtd->oobsize == 16) > > + mtd_set_ooblayout(mtd, > &pl353_ecc_ooblayout16_ops); > > + else if (mtd->oobsize == 64) > > + mtd_set_ooblayout(mtd, > &pl353_ecc_ooblayout64_ops); > > + } > > +} > > + > > +/** > > + * pl353_nand_probe - Probe method for the NAND driver > > + * @pdev: Pointer to the platform_device structure > > + * > > + * This function initializes the driver data structures and the hardware. > > + * > > + * Return: 0 on success or error value on failure > > + */ > > +static int pl353_nand_probe(struct platform_device *pdev) { > > + struct pl353_nand_info *xnand; > > + struct mtd_info *mtd; > > + struct nand_chip *nand_chip; > > + struct resource *res; > > + > > + xnand = devm_kzalloc(&pdev->dev, sizeof(*xnand), GFP_KERNEL); > > + if (!xnand) > > + return -ENOMEM; > > + > > + /* Map physical address of NAND flash */ > > + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); > > + xnand->nand_base = devm_ioremap_resource(&pdev->dev, res); > > + if (IS_ERR(xnand->nand_base)) > > + return PTR_ERR(xnand->nand_base); > > + > > + nand_chip = &xnand->chip; > > + mtd = nand_to_mtd(nand_chip); > > + nand_chip->exec_op = pl353_nfc_exec_op; > > + nand_set_controller_data(nand_chip, xnand); > > + mtd->priv = nand_chip; > > + mtd->owner = THIS_MODULE; > > + mtd->name = PL353_NAND_DRIVER_NAME; > > + nand_set_flash_node(nand_chip, pdev->dev.of_node); > > + > > + /* Set address of NAND IO lines */ > > + nand_chip->IO_ADDR_R = xnand->nand_base; > > + nand_chip->IO_ADDR_W = xnand->nand_base; > > + /* Set the driver entry points for MTD */ > > + nand_chip->dev_ready = pl353_nand_device_ready; > > + nand_chip->select_chip = pl353_nand_select_chip; > > + /* If we don't set this delay driver sets 20us by default */ > > + nand_chip->chip_delay = 30; > > + > > + /* Set the device option and flash width */ > > + nand_chip->options = NAND_BUSWIDTH_AUTO; > > + nand_chip->bbt_options = NAND_BBT_USE_FLASH; > > + platform_set_drvdata(pdev, xnand); > > + > > + /* first scan to find the device and get the page size */ > > + if (nand_scan_ident(mtd, 1, NULL)) { > > + dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n"); > > + return -ENXIO; > > + } > > + > > + xnand->row_addr_cycles = nand_chip->onfi_params.addr_cycles & 0xF; > > + xnand->col_addr_cycles = > > + (nand_chip->onfi_params.addr_cycles >> 4) & > 0xF; > > + > > + pl353_nand_ecc_init(mtd, &nand_chip->ecc, nand_chip->ecc.mode); > > + if (nand_chip->options & NAND_BUSWIDTH_16) > > + pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16); > > + /* second phase scan */ > > + if (nand_scan_tail(mtd)) { > > + dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n"); > > + return -ENXIO; > > + } > > + > > + mtd_device_register(mtd, NULL, 0); > > + > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_remove - Remove method for the NAND driver > > + * @pdev: Pointer to the platform_device structure > > + * > > + * This function is called if the driver module is being unloaded. It > > +frees all > > + * resources allocated to the device. > > + * > > + * Return: 0 on success or error value on failure > > + */ > > +static int pl353_nand_remove(struct platform_device *pdev) { > > + struct pl353_nand_info *xnand = platform_get_drvdata(pdev); > > + struct mtd_info *mtd = nand_to_mtd(&xnand->chip); > > + > > + /* Release resources, unregister device */ > > + nand_release(mtd); > > + > > + return 0; > > +} > > + > > +/* Match table for device tree binding */ static const struct > > +of_device_id pl353_nand_of_match[] = { > > + { .compatible = "arm,pl353-nand-r2p1" }, > > + {}, > > +}; > > +MODULE_DEVICE_TABLE(of, pl353_nand_of_match); > > + > > +/* > > + * pl353_nand_driver - This structure defines the NAND subsystem > > +platform driver */ static struct platform_driver pl353_nand_driver = > > +{ > > + .probe = pl353_nand_probe, > > + .remove = pl353_nand_remove, > > + .driver = { > > + .name = PL353_NAND_DRIVER_NAME, > > + .of_match_table = pl353_nand_of_match, > > + }, > > +}; > > + > > +module_platform_driver(pl353_nand_driver); > > + > > +MODULE_AUTHOR("Xilinx, Inc."); > > +MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME); > > +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver"); > > +MODULE_LICENSE("GPL"); > > Thanks, > Miquèl > > -- > Miquel Raynal, Bootlin (formerly Free Electrons) Embedded Linux and Kernel > engineering https://bootlin.com