On 05/01/2018 11:31 PM, Rob Herring wrote:
Deferred probe will currently wait forever on dependent devices to probe,
but sometimes a driver will never exist. It's also not always critical for
a driver to exist. Platforms can rely on default configuration from the
bootloader or reset defaults for things such as pinctrl and power domains.
This is often the case with initial platform support until various drivers
get enabled. There's at least 2 scenarios where deferred probe can render
a platform broken. Both involve using a DT which has more devices and
dependencies than the kernel supports. The 1st case is a driver may be
disabled in the kernel config. The 2nd case is the kernel version may
simply not have the dependent driver. This can happen if using a newer DT
(provided by firmware perhaps) with a stable kernel version.
Unfortunately, this change breaks with modules as we have no way of
knowing when modules are done loading. One possibility is to make this
opt in or out based on compatible strings rather than at a subsystem level.
Ideally this information could be extracted automatically somehow. OTOH,
maybe the lists are pretty small. There's only a handful of subsystems
that can be optional, and then only so many drivers in those that can be
modules (at least for pinctrl, many drivers are built-in only).
Cc: Alexander Graf <ag...@suse.de>
Signed-off-by: Rob Herring <r...@kernel.org>
---
This patch came out of a discussion on the ARM boot-architecture
list[1] about DT forwards and backwards compatibility issues. There are
issues with newer DTs breaking on older, stable kernels. Some of these
are difficult to solve, but cases of optional devices not having
kernel support should be solvable.
I think this is a reasonable approach. Maybe this should be a CONFIG
option that disallows pinctrl drivers (and power domain later) to be =m?
Then by default we could force those drivers to be compiled in, but if
you really wanted to do kernel modules for pinctrl/pd you'd consciously
potentially lose forward compatibility.
Alex